
Oregon State University
Autonomous Aerial Robotics Team

Daniel Miller, Team Lead, millerd4@engr.oregonstate.edu, 541-728-8090
Kyle Dillon, Tim Niedermeyer, Ryan Skeele, Michael Williams, Soo-Hyun Yoo

1148 Kelley Enginnering Oregon State University, Corvallis, OR 97330

ABSTRACT

The Oregon State University Autonomous Aerial Robotics Team has devel-
oped an indoor autonomous quadrotor with custom hardware and software
to compete in the International Aerial Robotics Competition (IARC). On-
board, an ATXmega128a3 microcontroller runs a 200 Hz PD orientation
controller. The quadrotor is capable of sending live video, LIDAR scans, and
altitude measurements to the base station which passes navigational com-
mands back to the quadrotor. The quadrotor possesses a passively compliant
robotic hand that will be used to pick up the USB flash drive in competition.

INTRODUCTION

Our strategy for indoor automous flight involves specific functional goals for each part of
the system. Flight stability is handled by the flight platform, however, all navigational data
gathered from distance sensors and cameras mounted on the flight platform is transmitted
to the base station for processing. The base station then transmits navigational commands
to the flight platform.

Stabilization sensory is handled using a three axis gyroscope, accellerometer and magne-
tometer. Navigational data comes from a number of distance sensors mounted on servos
that act as an improvised LIDAR. This solution was chosen because of the low electrical
and computing power required to process distance sensor data. A seperate wireless camera
is implemented to provide object recognition using the OpenCV libraries.

HARDWARE

Chassis

Ultimately, we aim to construct a chassis that is lightweight, durable, modular, and safe.

For initial tests, however, a simple “X” configuration quadrotor was assembled from

Page 1 of 5



laser-cut plywood. The symmetric construction of the “X” allowed us to make convenient
assumptions about the vehicle’s flight characteristics.

The final frame is constructed in an “I” configuration, which simplifies the task of mounting
cameras and distance sensors on the periphery of the quadrotor. The carbon fiber booms
are strong yet lightweight. The booms are also separable from each other, facilitating
repairs and modification. The motors are mounted to the frame with aluminum clamps.
Similar clamps are used to mount the sensors elsewhere on the booms. Finally, carbon
fiber shrouds prevent any of the four propellers from contacting objects or people.

End Effector

One of the primary objectives of the competition is to grasp a USB flash drive. Our grasping
mechanism will consist of an under-actuated, passively compliant four-fingered hand.
Each of the four fingers will contain two flexure joints. A single cable runs through the
center of each finger to its tip. These four cables are actuated by a single linear actuator.
The use of only a single actuator in this under-actuated system helps keep down weight
and cost and allows the hand to automatically adapt to the shape of the object being
grasped without the need for a separate control system.

Electronics

A single 3-cell lithium polymer battery powers the motors and motor controllers on the
quadrotor. The battery is also regulated down to 5 volts to power an Atmel Xmega
microcontroller, a 2.4 GHz XBee radio, and various distance and inertial sensors. The
wireless camera is powered by a seperate 9 volt source.

The organization of the electrical system is illustrated in Figure 1.

SOFTWARE

Aerial Stabilization and Flight Control

Orientation Kinematics

An accurate measurement of the quadrotor’s orientation is key to autonomous stabilization.
The orientation can be represented with a direction cosine matrix (DCM), which is a 3x3
matrix containing the cosines between each of the 9 possible pairs of axes of two separate
Cartesian coordinate systems.

Page 2 of 5



Figure 1: Control Hardware Block Diagram

In the context of inertial measurement in robotics, a 3D vector could be represented in
either the global (earth) or the local (body) frames of reference. For example, the location
of an end effector may be represented as 〈1, 0, 0〉 in the local frame but have different (and
changing) X, Y, and Z components in the global frame, and vice versa.

If the controller loop frequency is high enough (on the order of 100 Hz), an axis of the
DCM, its rotational vector, and its linear velocity are approximately orthogonal to each
other. Thus, the magnitude of the angular velocity of a unit vector approximately equals its
linear velocity, which means that the DCM can be calculated by integrating the gyroscope
readings.

Unfortunately, since the gyroscope only measures the change in the orientation, the DCM
will drift over time. A 3-axis accelerometer can be used to correct the roll and pitch
drift. Similarly, a 3-axis magnetometer can be used to correct for yaw drift. With these
corrections, an accurate DCM can be maintained.

Cascading PID Controllers

The D controller in a simple angular position PD controller can hinder the responsiveness
of the quadrotor, which is crucial to stability. A better alternative is an angular position P
controller that feeds a desired velocity to an angular velocity PD controller.

At first thought, it might seem that this combination of a position P controller and a velocity
PD controller is no different than a position PD controller, since both the position D and the
velocity P are based on velocity measurements. However, the two controllers do different
things with the velocity measurements.

Page 3 of 5



The position D controller has a damping effect on motion in that it always resists a change
in position. This means that if the quadrotor experiences a perturbation away from some
desired position, the D controller will help resist the motion, as desired. However, as
the quadrotor tries to recover from this error state, the D controller blindly hinders the
movement back towards the desired position, which is not at all optimal.

The velocity P controller, on the other hand, pushes the velocity to whatever it should
be, whether that means slowing it down or speeding it up. The velocity D controller
ensures that the velocity change does not happen too abruptly, helping reduce the chance
of overshoot. The controller is able to do this by keeping track of a desired velocity in
addition to the current velocity, which provides a context upon which the controller can
“decide” whether it should help a positional movement or hinder it, instead of blindly
hindering all movement as is the case with a position D controller.

This means that the P/PD controller as a whole can take a desired position input and
accelerate the body towards and maintain a target angular velocity until the current
position nears the target position. Only then will the controller actively slow down
the movement. This makes for a controller that can respond much more quickly while
maintaining stability, making flight possible (Figure 2).

Figure 2: Prototype Flight Platform Operating Outdoors

Page 4 of 5



Navigation

Navigation Hierarchy

Each component of our system has a specific responsibility with little overlap with those
of others. The onboard microcontroller is solely responsible for maintaining angular
orientation. The microcontroller streams data from distance sensors through the XBee link
to the base station. A video stream is sent to the base station from a wireless camera. The
base station is responsible for processing this data and send navigational commands back
to the quadrotor in order to complete the mission.

Navigation Strategy

In order to navigate indoor environments we implement an array of simple distance
sensors, with some mounted on pan or tilt mechanisms, to serve as an improvised LI-
DAR system. This approach was chosen because of its accessibility and low power and
bandwidth requirements.

Distance sensor data gathered on the flight platform is sent to the base station. A navigation
system at the base station processes both distance sensor data and images sent from the
flight platform to make navigational decisions. These decisions are then relayed back to
the quadrotor as movement commands.

Robot Operating System

Robot Operating System (ROS) is a collection of libraries and tools that allow developers
from around the world to contribute software packages such as device drivers, messaging
libraries, and visualizers in a consistent format for others to use. We have developed
our navigation system to operate within this software architecture. This allows us to use
third-party joystick drivers, point cloud libraries, and SLAM algorithms, which frees us
from having to reimplement solved problems.

Page 5 of 5


