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ABSTRACT 

Recently, numerous efficient approaches to simultaneously localization 

and mapping (SLAM) based on ground robots have been proposed. However, 

we may encounter difficulties when applying the algorithms to those systems 

with higher real-time requirements, such as micro aerial vehicles (MAVs). This 

paper presents a fast and effective solution to SLAM problems, enables a 

quadrotor to autonomously explore unknown indoor environments. We propose 

a probabilistic approach to estimate the position. The estimation error is 

reduced by the evaluation function with a penalty term. Furthermore, Bayesian 

method is used to update the occupancy probability grid map and provides an 

effective way to solve sensor uncertainty. Experimental results carried out by 

using a laser range sensor on a quadrotor platform in indoor environment show 

that the incremental SLAM strategy has a superior performance. 

1 INTRODUCTION 

Micro aerial vehicles (MAVs) have been used in many applications in the real world, such as 

searches, rescues, inspections, and a lot of military tasks which are dangerous or difficult for 

people. However, sometimes GPS is unavailable when MAVs explore unknown indoor areas. 

Considering that, recently there has been increasing researches in navigation and mapping 

problems, which are often referred as simultaneous localization and mapping (SLAM) 

problems, but almost all of them focus on ground robots. Because of the limited onboard 

processing capacity in most MAVs, the use of complex SLAM algorithms seems challenging. 

Furthermore, laser data acquired from the three-dimensional surrounding environments is 

more difficult to deal with than the two-dimensional. 

According to the types of computation methods, SLAM algorithms can be classified into two 

categories, one is based on extended Kalman filters (EKF-SLAM)
[1-3]

, the other is using 

Rao-Blackwellzed particle filters (RBPF-SLAM)
[4, 5]

. For the former, one of the most difficult 

problems is the feature extraction. Most papers
[2]

 make use of laser intensity information to 

recognize landmarks, which may fail in the environments with walls and corridors. In 

literature [2, 3], maintaining the knowledge of the relative relationships between all 

landmarks makes EKF-SLAM computationally intractable. Rao-Blackwellzed particle filters 

were proposed as an effective mean to solve the SLAM problems
[4,5]

. Scan matching is 

applied to minimize errors of odometry during mapping, which is convenient for the 
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distribution of particles. Since each particle maintains its own map, an important problem of 

this approach is how to keep the number of particles small. This problem can be solved by 

combining scan matching and RBPF which can obviously decrease the number of required 

particles
[4]

. However, most of these SLAM algorithms cannot run in real-time for indoor 

exploration because each practical carries an individual map of the environment, which is 

computationally expensive and requires a mass of memory. 

We present a real-time fast incremental SLAM algorithm capable running on MAV platforms 

for autonomous indoor flying. A laser range finder is used to collect the environment 

information surrounding the MAV. An inertial measurement unit (IMU) is also needed to 

determine the vehicle attitudes which are used to transform the three-dimensional data of laser 

into a two-dimensional plane. A reference map based on probabilistic scan matching 

algorithm is proposed to estimate current location of MAV. Although our scan matching 

algorithm and Olson’s method which is presented in literature [6] both use a probabilistic grid 

map, it differs in two significant ways: the forming of local map and the search strategy 

during estimating position. In fact, our scan matching algorithm is faster and with more 

accuracy. The final occupancy grid map is built incrementally with the Bayesian update based 

on the current position and the observation of MAV. Localization errors and sensor 

uncertainty will be reduced during mapping. 

This paper is organized as follows. In the following section, we will discuss the algorithm for 

scan matching. In section 3, Bayesian mapping is explained in detail. At last, we conclude a 

set of experiments results which validate our real-time fast incremental SLAM algorithm 

running on a quadrotor platform in Section 4 and Section 5. 

2 Relative Position Estimation of Scan Matching 

Since MAVs don’t have wheel odometry to measure relative position, they must rely on 

exteroceptive sensors, matching the incoming measurements one after the other to get the 

current relative motion. This process can be performed on both laser scans and camera images. 

Laser scan matching algorithms can be described as the following: considering the MAV 

sensing an environment from the two laser scans 1z  
and 2z , the aim is to find the optimal 

rigid body transform ( , , )x y  T  that aligns the current laser scan with the previous scan. 

Transform T  is parameterized by three values: two translational components x , y  and a 

rotational component . The process of scan matching can be explained by figure 1. Because 

the same points will not be measured due to the motion of the vehicle, each scan matching 

algorithm must find a way to deal with correspondences between laser points. It is usually 

solved in three ways: matching the individual point from current scan with one point in the 

previous scan, such as the Iterative Closest Point (ICP)
[7]

; extracting higher level features such 

as lines and corners and then matching them; creating a likelihood map from previous scans 

and then matching current scan to that map, such as Olson’s method. Notice that laser scanner 

measures range in a 2D plane, while the MAV moves in full 3D environment. Therefore, we 

need to transform laser data to 2D plane using attitude angle measured by IMU, as shown in 

figure 2. 
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  Figure 1.Illustration of scan-matching     Figure 2.Correction of measured laser data 

a) Laser data preprocessing 

Suppose that the laser coordinates coincides with the body coordinates of MAV. Sensor 

of IMU measures the attitude between body coordinates and world coordinates. The laser 

range finder measures a set of distances 
ir  

and direction angles 
i  

along the 
b bx y  plane. 

Each of these distances and angles can be represented by a two-dimensional vector

 cos sin
T

i i i i ir r r . ( , , )o

b   T  is the transformation matrix from the body frame to 

the world frame and it is determined by three-axis attitude angle from IMU.  ,  and   

represent pitch, roll and yaw respectively. Since more accurate calculations of yaw angle will 

be acquired from scan matching algorithm, the transformation matrix can be simplified as T  

by following equation: 

  

c o s 0

s i n s i n c o s



  

 
  

 
T =                           (1) 

Thus, we can compute the real position of laser endpoint iz from the following equation: 

                                   i i
z T r                                (2) 

b) Map based probabilistic scan matching 
ICP scan matching algorithm needs to compute the correspondences explicitly, which is a 

process of challenging and error prone. Large amount of calculation can be omitted if we use 

one approach with no-correspondences. As mentioned above, we can create a map m  of 

environment from previous scans, and then match the new scan against that map. Suppose 

that MAV moves from 1ix  to ix , where ( )Tx y x . The observation iz  depends on 

the environment map m  and the current robot’s position. Our goal is to find maximize 

posterior distribution over the MAV’s position as follows: 

                      
1

: ( x , y , )

ˆ a r g m a x ( | )i i i ip , ,






x

x x x m z                       (3) 

There are two critical questions in order to calculate equation (3). One is where does the map 

m  comes from， the other is how to find the maximum likelihood value through the search 

algorithm. We use Olson’s method to perform a robust exhaustive search over candidate areas. 

However, exhaustive searching method may increase the amount of computation, so we have 

to reduce the search area, which will result in no maximum point in limited search areas. 
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Therefore, we make several changes to Olson’s method. We discrete the map in different 

resolution levels, the low-resolution map is used to quickly identify areas that might contain 

the global maximum and the higher-resolutions are used to find the maxima in certain areas. 

This multi-level resolution is more robust and faster to find the best pose.  

Obtaining the reference map m  is a complex issue and requires a full solution to the SLAM 

problem. Some papers
[8]

 use previous laser scan or last several scans as the reference map m , 

which may cause accumulated error. In order to reduce the error, an evaluation function f  

with penalty term is designed to determine whether the current scan is suitable for use as a 

reference scan. It is given by: 

            

1

2 2 2

2
1 1 1

1 1
( ) ( )

n n n

i i i i i

i i i

f score i x x
n n

   



  

   
     
   
                 (4) 

Where
ix is the maximum likelihood estimation of different resolution map, and

ix is a 

component of vector ix . i  is the positive weight of the each estimated result. The higher 

the resolution-levels, the greater the weights, and the sum of 
i  is 1, shown in Equation (5) 

 1

1
n

i

i




                                (5) 

  is a positive penalty parameter and ( )score i  represents the number of grids successfully 

matched of thi evaluation. We can separate Equation (4) in two parts. The first part shows the 

consistency of laser data, and the second part is a confident covariance estimation of ix  with 

penalty parameter. A successful scan matching reflects high consistency of measured data and 

small uncertainty of estimated results. In order to get a smaller function value, Equation (5) 

must have higher scores and lower covariance. If TVf  , where TV  is the threshold of the 

function, we have sufficient evidence to believe that the current scan can be integrated into 

the reference map m . Therefore, comparing a new scan to the reference map gives much 

more accurate position estimation than comparing each scan only to the scan from previous 

time step, as it reduces the integration of small errors over time.  

3 Occupancy probability grid maps using Bayesian update 

In this section we will discuss how to learn an occupancy grid map from the laser sensor data 

using Bayesian Updating. The key idea of learning a grid map is to estimate the joint posterior

1: 1:( | , )t tP m x z . Suppose that the occupancy probability of a grid cell m  can be computed 

independently for all sensor measurements. This estimation is performed given the 

observations 1: 1, ,t tz z z and the trajectory 1: 1, ,t tx x x , which can be acquired from scan 

matching algorithm of previous section. One form of Bayesian theorem gives
[9]

: 

                  

1 : 1 : 1 1 : 1 : 1
1 : 1 :

1 : 1 : 1

( | , , ) ( | , )
( | , )

( | , )

t t t t t
t t

t t t

P m P m
P m

P

 




z x z x z

x z
z x z

                (6) 

And the analogous way: 

                

1 : 1 : 1 1 : 1 : 1
1 : 1 :

1 : 1 : 1

( | , , ) ( | , )
( | , )

( | , )

t t t t t
t t

t t t
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z x z x z
x z

z x z
              (7) 
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The odds formulation of equation (5) and (6) is convenient for computation: 

                

1: 1: 1: 1: 1 1: 1: 1

1: 1: 1: 1: 1 1: 1: 1

( | , ) ( | , , ) ( | , )

( | , ) ( | , , ) ( | , )

t t t t t t t

t t t t t t t

P m P m P m

P m P m P m

 

 


  

x z z x z x z

x z z x z x z              

(8) 

Assume that tz
 
is independent from 1: 1tx  and 1: 1tz  given known m , and applying Bayes 

rule we determine: 

               

1
1: 1: 1

( | , ) ( | )
( | , , ) ( | , )

( )

t t t
t t t t t

P m P
P m P m

P m
  

x z z x
z x z z x              (9) 

Finally, combining equation (8), (9) and applying the fact ( A) 1 (A)P P    lead to: 

           

1

1: 1 1: 1
1: 1:

1: 1 1: 1

1 ( | , ) 1 ( | , )( )
( | , ) 1

( | , ) 1 ( ) ( | , )

t t t t
t t

t t t t

P m P mP m
P m

P m P m P m



 

 

  
  

 

x z x z
x z

x z x z
 

      (10) 

Equation (10) explains how to update belief about the occupancy probability of a grid map 

given a new measurement tz
 
at location tx . We usually assume that the initial belief ( )P m  

is 0.5 so that the prior can be removed from the equation. Actually, we just need to compute 

( | , )t tP m x z  at each time t .  

A laser range finder can be modeled by varying hit and missed areas over the sensed area. 

Considering a beam of certain distance in a direction, the grid line can be divided into three 

parts, as figure 3 shown. The grid cells of missed areas considered as free cells, the cell hit by 

beam called occupied cell and undetected region by beam regarded as unknown cells. We can 

describe the function of probability ( | , )t tP m x z  using following preconditions: the prior of 

certain grid cell is 0.5, 
freeP

 
is the probability for free cells and occP  for endpoint cell. 

Typically, we define 1free occP P  . Figure 4 shows that the probability of function

1: 1:( | , )t tP m x z
 
changes when a cell is seen several times as free or occupied.  

 

Figure 3                           Figure 4 

Figure 3 shows the probability of grid cells in a beam direction. Distance of the beam is 3 

meters. 0.2freeP   and 0.8occP  . Figure4 shows the change of probability when a grid cell 

is measured several times as free or occupied. 
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4 Experiments 

The approach described above has been implemented and run online on our quadrotor 

platform. As figure 5 shown, our quadrotor equipped with an UTM-30LX laser range finder 

and an XSens IMU for estimating the attitude.  

  

Figure 5. Our quadrotor platform (left), UTM-30LX laser range finder (middle) and XSens 

IMU (right). 

The experiments were carried out in a variety of environments. The first example experiment 

was in Tsinghua experimental site. The size of this environment is 8m8m. The quadrotor 

traveled 25m in an average speed of 0.5m/s. Figure 6 shows the map generated based on our 

algorithm and the trajectory after closing a loop. As we can see from the figure, our approach 

is effective. Moreover, the time required to execute one cycle is less than 10ms on our 1.6GHz 

processor, and it can be used to the closed-loop control in real-time.  

          

Figure 6. Map of Tsinghua experimental site (left) obtained in real time using our algorithm, 

and the trajectory of our quadrotor (right) after closing the major loop. 

 

Figure 7. Incremental mapping of New Main Building of Beihang University. The left image 

shows the initial map and the right image shows the resulting map. 

A second example of incremental maps obtained with our approach is depicted in figure 7. 

The maps show the sixth floor of 50m50m large corridor environment of New Main 

Building at Beihang University. The grid resolution is 10cm. As can be seen from the figure, 
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our quadrotor went around the circle in manual mode and still can successfully learn an 

occupancy probability grid map with high accuracy.  

5 Conclusions 

This paper has presented a real-time incremental SLAM method for MAV that combines a 

scan matching procedure with Bayesian mapping using laser scans. The scan matching routine 

is used to estimate the position with great accuracy and the mapping algorithm with Bayesian 

updating establish a higher precise global map of indoor environments. The practical 

experiment results using our quadrotor show that the approach is extremely fast and effective.  
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