
Oregon State University
Autonomous Aerial Robotics Team

2013 International Aerial Robotics Competition

Soo-Hyun Yoo, Team Lead, yoos@engr.oregonstate.edu, 740-343-9667
Ryan Skeele, Ryan McAfee, Kyle Cesare, Zach Reyes, Nathan Brahmstadt, Jordan Crane, Nick Haller

204 Rogers Hall, Oregon State University, Corvallis, OR 97333

ABSTRACT

The Oregon State University Aerial Robotics Team will compete in the 2013
International Aerial Robotics Competition with a custom quadrotor capable
of autonomous navigation of a previously unexplored, cluttered indoor
environment. The quadrotor’s chassis and flight system are optimized for
reliable 7-minute flights. A slimmed-down ASUS Xtion Pro Live provides
both a depth map and an RGB video feed of the environment for 3D SLAM
and object recognition. A custom flight control board built around a 32-bit
STM32F405 microcontroller allows for a 1 kHz flight stabilization loop. An
array of neodymium magnets on the bottom of the quadrotor will be used to
pick up the USB flash drive.

INTRODUCTION

Our primary goal this year is to fully navigate the maze and either simulate self-destruct
when the timer runs out or egress with a complete map of the space. We will attempt
flash drive pickup by identifying the rectangular box and landing in it with an array of
neodynium magnets attached to the bottom of the quadrotor.

Our 2013 quadrotor was designed with four criteria in mind: lightweight, small, strong,
and simple. The smallest stock carbon tubes, minimalistic aluminum center brackets, and
lightweight 3D printed motor mounts were integrated in order to meet these criteria.

Two 4S 1000 mAh lithium polymer batteries power the quadrotor’s four Turnigy D2830-11
brushless DC motors that spin 8x6 3-blade propellers. A 5V switching regulator further
powers a custom flight control board and two onboard Odroid-X2 mini-PCs clocked at
1.7Ghz. A simple, isolated killswitch mechanism allows for reliable cutoff of motor power
in case of malfunction.

The two Odroids and a custom flight control board built around the STM32F405 32-bit
microcontroller provide the necessary computing power to run all guidance, navigation,
and control algorithms onboard the quadrotor itself. An ASUS Xtion Pro Live stereo
camera provides depth and color vision.

Page 1 of 12



High-level control algorithms on the Odroids run within Robot Operating System (ROS),
which makes it easy to network the two Odroids together to spread the computing load.
RGBDSLAM is used to build up a 3D Octomap of the environment for SLAM and 2D map
extraction.

A custom navigation node using medial axis skeletonization sends flight commands to the
flight control board, which in turn maintains a desired orientation of the quadrotor with a
1 kHz cascading PID control loop tuned with the help of a compact test mount designed
as an low-friction safety catch to protect the quad during testing and demonstrations.

CHASSIS

The first decision when custom designing a multi-rotor is how many rotors to have.
A three-rotor design was briefly considered for its smaller number of motors, but we
ultimately decided to continue with a quadrotor since the additional weight of a tricopter’s
servo counteracts any weight savings and adds a mechanical linkage that may break. In
addition, the inherently tilted steady state of a tricopter while hovering adds unnecessary
complexity to vision and control systems that is not present on a quadrotor.

We optimized our combination of motors and propellers for flight at 1.5 kg. General
consensus among RC enthusiasts on web forums indicate that most multirotor flight is
most efficient if hover throttle duty cycle is around 50% of the maximum. We tested
motor and propeller combinations and narrowed our selection down to those capable of
providing thrust at this ratio. With a second and third parameter of size and weight, the
resulting motor and propeller combination is Turnigy D2830/11 1000kV outrunners with
master airscrew 8x6 3-blade propellers. This combination provides a maximum thrust of
over 750g per motor.

Lightweight, small, strong, and simple were the four most important requirements set
before designing the frame. The arms of the quadrotor uses the smallest carbon tubes that
could be guaranteed straight by the manufacturer. The arms are attached in an X formation
wrapped in the center with a carbon-aramid weave. Two aluminum rings act as a clamp to
provide a supporting moment on each arm as well as a mounting plate for the electronics.

Motor mounts designed as plugs to the carbon tubes were optimized for weight and
strength using finite element analysis (FEA, see Figures 1 and 2). The motor mount design
is capable of accepting any motors up to 40mm in diameter. The design allows for multiple
orientations of the motor and propellor, with the chosen configuration (Figure 3) used to
minimize torque on the carbon tubes. With the first configuration (Figure 4) the torque
caused significant vibration issues. The current configuration decreases vibrations by
minimizing the moment arm of the propellers to the motor mounts.

Page 2 of 12



Figure 1: FEA with red indicating high levels of stress. Forces applied
perpendicular to flat mount.

Figure 2: FEA with red indicating high levels of stress. Forces applied
torsionally simulating torques from figure 4.

ELECTRONICS

Power

All electronics on the quadrotor are powered by two 4S 1000 mAh lithium polymer batteries
wired in parallel. While using a single 2000 mAh battery would have been ideal, we were
unable to find such a battery with the desired dimensions.

Four Turnigy D2830-11 1000kv brushless motors powered by Turnigy Plush 18A ESCs turn-
ing 8x6 Master Airscrew 3-blade propellers provide us with our performance characteristic
of 50% throttle hover.

The Texas Instruments PTN78020WAH wide-input voltage-adjustable switching regulator

Page 3 of 12



Figure 3: Final motor mount configuration. Having the two rotating
masses on either side of the mount reduces vibration.

Figure 4: Initial motor mount configuration. The longer moment
arm made the mount prone to vibrations.

provides steady 5V power at up to 6A for onboard logic and small actuators. The regulator
is integrated into our flight control board and also powers a linear regulator that in turn
supplies 3.3V to the logic bus.

Page 4 of 12



Onboard Computing: Odroid-X2

In 2012, many teams, including our own, were wracked by wireless interference due to
overusage of the 2.4 GHz band in the competition arena. We decided to work around this
issue by confining all computation to the quadrotor itself, with only a 900 MHz downlink
for killswitch activation.

The Odroid-X2 is a 4”-square mini-PC built around the Samsung Exynos 4412 quad-core
ARM Cortex-A9 clocked at 1.7 GHz (Figure 5). Each quadrotor is built with two Odroids
onboard, networked via Ethernet for sharing computational load. At full load, each Odroid
can draw up to 2A at 5V.

Figure 5: Stack of two Odroids.

Vision: ASUS Xtion Pro Live

The Xtion Pro Live (Figure 6) is much like the more commonly known Microsoft Kinect in
that it outputs a 30 Hz depth map and a 1280x720 RGB video stream (up from the 640x480
video of the Kinect). Unlike the Kinect, however, the Xtion Pro is physically slimmer and
lighter and lacks the Kinect’s heavy motorized base, making it well-suited for use on small,
lightweight UAVs. It uses the same PrimeSense chip for generating the depth maps, so it
functions identically to the Kinect where software is concerned.

The depth map from the Xtion Pro is fed to a SLAM process on one of the Odroids onboard
the quadrotor and is the sole sensor providing positional awareness for the quadrotor.

Page 5 of 12



Figure 6: ASUS Xtion Pro Live without external housing.

Flight Control Board (STM32F405)

The 2012 flight control board built around the ATXmega128a3, while sufficient for basic
flight, was scrapped in favor of using the much more powerful STM32F405 in order to
achieve 1 kHz flight stabilization. Although we do not yet take full advantage of this
higher control loop frequency, it effects lower gyroscopic drift and allows for higher PID
gains and tighter control.

The flight control board controls four ESCs with 400 Hz PWM signals and has four SPI
connectors available for future use of a custom 1 kHz-capable, SPI-enabled ESC. The flight
control board receives flight commands from either:

• The Odroids over a 460800 baud USART bus for autonomous control, or

• The XBee over a 38400 baud USART bus for manual control.

Orientation estimates are calculated using feedback from an InvenSense MPU-6000 six-axis
gyroscope/accelerometer chip, which is polled at 1 kHz in sync with the flight control
loop.

Killswitch and Wireless Communication

The killswitch provided by the IARC was modified to operate at 16.8V (4S lithium polymer)
and is wired in series between the battery and ESCs. The PWM signal required to keep the

Page 6 of 12



killswitch closed is generated by a 900 MHz XBee Pro and is not associated at all with the
flight control board.

The onboard XBee is paired with another XBee held by a human operator. A pair of
pins between the two XBees are configured to mirror each other such that the pin on the
handheld XBee can be given a PWM signal (generated by a microcontroller, also a part of
the handheld device) and mirrored by the onboard XBee. This minimizes the amount of
software and electronics involved, thereby maximizing reliability.

Although the XBee link to the killswitch is currently the only form of wireless communi-
cation we plan to employ during competition, we will attempt to stream video from the
quadrotor to the base station via 5 GHz wifi. If this is successful, we will once again try
offboard guidance and navigation as appropriate.

SOFTWARE

RGBDSLAM on the onboard computers builds up a 3D Octomap using the Xtion Pro. A 2D
map is extracted from this 3D model with arbitrary precision. A navigation process then
uses the 2D map to generate a desired flight path and sends appropriate flight commands
to the embedded flight control board. The flight control board then maintains the quadrotor
at the desired orientation with a 1 kHz control loop.

Robot Operating System

Robot Operating System (ROS) is a collection of libraries and tools that allows developers
from around the world to contribute software packages such as device drivers, messaging
libraries, and visualizers in a consistent format for others to use.

We have developed our high-level control systems to operate within this software architec-
ture. This allows us to use third-party joystick drivers, point cloud libraries, and SLAM
algorithms, which frees us from having to reimplement solved problems.

In addition, due to ROS’s exclusive use of TCP/UDP network protocols for inter-process
communication, ROS nodes on the two separate Odroids can communicate with each other
with no additional software, save for basic network configuration.

RGBDSLAM and Octomap

Traditionally, point clouds, elevation maps, and multi-level surface maps have been used
to represent a map generated using SLAM. However, the sheer volume of data involved in

Page 7 of 12



keeping track of the physical world can overwhelm even the fastest desktop computers
available today.

One way in which to represent 3D environments is to use a grid of uniformly-sized
cubes (voxels). However, the grid must be initialized in memory prior to exploration,
which makes this method memory-intensive and limits exploration to the space within the
preallocated grid.

Octomap is a novel approach to storing and manipulating 3D information that has been
designed to meet the following three requirements:

• Probabilistic representation: measurements are, by nature, uncertain. The model
must reflect this uncertainty.

• Modeling of unmapped areas: the robot has to be able to avoid traversing unmapped
areas before measuring said areas.

• Efficiency: since the map is a central point in the system, it must be efficient with
regards to access times and memory consumption.

3D space can be represented hierarchically using octrees, which recursively divide each
voxel into eight subvoxels. Due to this hierarchical nature, an octree can easily be cut at
any level to obtain a downsampled map of the environment.

The Octomap library was made freely available as a ROS package by Hornung and his
group. We use RGBDSLAM’s implementation of the Octomap library on the two Odroids
onboard the quadrotor and hope to achieve near-realtime performance despite limited
computational resources.

2D Map Extraction

It is trivial to either extract a 2D slice from the 3D Octomap by specifying a Z-height or to
project all points to a plane by ignoring the Z-height. This 2D slice is then published to the
navigation node as an image.

Navigation

First, the 2D extracted map is skeletonized via a medial axis morphological transformation,
which generates a set of points equidistant from at least two points on the object’s boundary.
This gives us a very rough idea of valid paths we can follow (Figure 7). We then filter these
points be their distances from obstacles.

Page 8 of 12



Figure 7: Skeletonized 2D map.

Next, we find all path endpoints (Figure 8). This is accomplished by a computing a
template matrix cross-correlation, where the templates are line segment endings in each of
the eight directions.

Figure 8: Endpoints of skeleton identified.

We can then use the combination of the skeletonization and the endpoints to generate
paths to each endpoint, given any starting location on the map (Figure 9).

Figure 9: Paths to endpoints generated.

Page 9 of 12



Once we have these paths, the navigation node commands the flight controller with a
desired orientation that will cause the quadrotor to move. We always choose the nearest
(via path geometric cost) unvisited endpoint. Following this algorithm, and updating the
skeletonization as we explore previously unknown areas, we should be able to traverse
the entire map and eventually find the USB flash drive.

The above is accomplished using a combination of Python, numpy, scipy, and scikit-image.

Flight Control

In order to mitigate the added complexity of the STM32F4 over the ATXmega128 used
on our 2012 quadrotor, we write our controllers as processes within ChibiOS, a real-
time operating system for embedded devices. ChibiOS provides basic functionality for
managing threads, mutexes, and a hardware abstraction layer. We run two main threads:
a 1 kHz flight control loop and a 100 Hz communications loop. Since these threads are
created in the same generic format such as the following control loop thread, we can easily
add more processes:

/*
* Control loop

*/
static WORKING_AREA(wa_control_thread, 128);
static msg_t control_thread(void *arg)
{

(void) arg;
chRegSetThreadName("control");

systime_t time = chTimeNow();

/* DCM of body in global frame. */
float dcm_bg[3][3];
m_init_identity(dcm_bg);

/* Motor duty cycles */
float motor_dc[4];

while (TRUE) {
time += MS2ST(CONTROL_DT*1000); // Next deadline in 1 ms.

update_ahrs(CONTROL_DT, dcm_bg);
run_controller(dcm_bg, motor_dc);
update_motors(motor_dc);

palTogglePad(GPIOA, 6);

chThdSleepUntil(time);
}

return 0;
}

The 1 kHz control loop stabilizes the quadrotor in the air by doing the following in
succession:

Page 10 of 12



1. Read IMU (gyroscope and accelerometer)

2. Update orientation estimate

3. Run cascading PID controllers on current and desired orientations

4. Update ESC duty cycles appropriately

This code was largely ported over from code used in our 2012 tricopter (built experimen-
tally, not used for competition). The higher loop frequency lends improved stability and
reduced gyroscopic drift, thus making higher-speed maneuvers feasible.

TESTING AND SAFETY

Table Mount

A restrictive three-dimensional arm was built to safely test and demonstrate the quadrotor
(Figure 10). The arm limits the quadrotor’s ability to move. This was developed in response
to previous crash tests that resulted in hours of wasted time fixing broken hardware.

Figure 10: Quadrotor on test mount.

Several design solutions were explored culminating in the current telescoping arm design.
One such alternative was a C-shape frame structure, with a pulley system that was able to
move the quadrotor horizontally and vertically. This idea was impractical because it was
large, which would have been too unwieldy to be used portably for public demos.

Page 11 of 12



Our final design is capable of being collapsed when not in use and extended during testing.
The arm, when clamped to a table, is able to rotate 360 degrees and provides the quadrotor
with a freedom of motion 4 feet in diameter and 2 feet in height. The test stand allows us
to reduce risk of catastrophic damage to our quadrotor during testing.

CONCLUSION

The OSU Autonomous Aerial Robotics Team has constructed an ambitious entry to the
Mission 6 challenge. With custom flight control breakout board, onboard processing for
vision and navigation, and a lightweight chassis for longer flight time, the quadrotor is a
completely autonomous and untethered flying machine.

Porting over flight control software to the real time operating system ChibiOS allowed us
to take advantage of the ARM processor and its capability to multithread.

Optimizing the chassis to meet competition requirements gave us new challenges. We
applied root cause failure analysis to determine vibrations were caused by long moment
arms from the propellers. In addition we developed a way to safely perform full flight
tests without fear of damaging the quadrotor.

Developing a solution to radio interference problems introduced the hurdle of onboard
processing. Processing power was perhaps the biggest challenge of this year and has led
to much of the software design choices.

Success at the 2013 competition will come with fully autonomous mapping of the building
and shutdown or egress at the end of flight time.

Next year’s team looks to advance this years progress with the exploration of a more
elaborate sensor/vision system.

THANK YOU

We would like to thank the OSU College of Engineering, the Oregon NASA Space Grant
Consortium, DW Fritz Automation, and the National Science Foundation for their generous
support.

The OSU Aerial Robotics Team is supported in part through NASA/Oregon Space Grant
Consortium, grant NNX10AK68H.

Page 12 of 12


