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Abstract—This paper reports the current preparation progress
of HKUST IARC Team. We treat Mission 7 as a final destination
on a big road map. To achieve this final goal we must first
solve some smaller problems including iRobot tracking, obstacle
avoidance, localization without landmarks and so on. After
these problems are solved, proper integration is needed to
make the final system. At the beginning stage, we focus on
solving iRobot tracking and UAV localization subproblems. We
devise algorithms that use five cameras to do the tracking and
localization work. Preliminary results showed the robustness of
our algorithms.

I. INTRODUCTION

After the initial release of the rules for Mission 7, HKUST
IARC Team started to analysis the problems to be solved and
finally divided Mission 7 into several subproblems.

The basic functionality of an aerial robot is attitude control.
Though quadrotor control has already become a standard
technique instead of a research topic, we still implement a
new control algorithm rather than use existing ones. Our new
algorithm adopts exponential mapping rotation parametrization
and considers the dynamic model of the aerial robot. Therefore
our aerial robot has faster action and more precision attitude
control.

In parallel with the study of attitude control, we target
on subproblems that are prerequisites of sophisticated behav-
iors required by Mission 7. These subproblems are: iRobot
detection and tracking, obstacle avoidance, and localization
without landmarks. We can only proceed when these three
subproblems are solved efficiently and robustly.

Obstacle avoidance is the first subproblem we tackled and
partially solved. Various obstacle avoidance algorithms are
presented in literatures. The famous [3] is proved to be
an efficient solution. It lead to VFH+ [23] and VFH* [24]
where improved algorithms can handle more complicated
situations. VFH algorithms are efficient for ultrasonic sensors
and LIDAR, but they can only deal with 2D environment.
In recent years, since inexpensive and on-board vision system
becomes available, people started to use cameras to do obstacle
navigation. A direct way is generate disparity image by stereo
epipolar geometry [15]. Once the disparity image of cameras
is obtained, the rest work is conceive vehicle control law
according it [7], [15], [16]. Another vision-based method is
detecting obstacles by image feature tracking using multiple
view geometry [6], where obstacles are represented by features
identified from multiple consecutive images. All the early
methods only consider local information that obtained in a
short period of time, such as one scan of LIDAR or a couple
of sequential images. While in past years, as SLAM techniques
becoming mature, obstacle avoidance with a given global map
is possible [2], [13]. Information gathered from sensors will
first be assimilated into a 3D map. And then the problem

of generating dodging actions will become a path planning
problem. Our method takes in the main ideas of existing
methods. We need a global map for action generation, while
the algorithm must be computational efficient to save resources
for other tasks. Thus we choose LIDAR as detection sensor,
and use map-based control law for obstacle avoidance.

iRobot detection and tracking is related to object tracking
and visual servoing research. We not only need to detect the
relative position of a iRobot to the aerial robot, but also get its
orientation and status, namely whether it is moving forward
or self rotating. To make the aerial robot able to touch the
top plate of a iRobot, the key technique is visual servoing [8].
When hovering over the iRobot, the aerial robot must have
instant and precise response to iRobot position changing. So
the first task is get the exact position of the iRobot. Because
the size of the top plate of iRobot is known, calculation of the
position of iRobot in camera frame is a “Prospective n-point”
(PnP) problem [9]. PnP problem was extensively studied for
more than twenty years. There are many efficient algorithms
been developed [10], [19]. Despite PnP problem itself is well
studied, due to camera image distortion and noise, the result
of PnP solution is not accurate enough to be directly used as
true robot position. So we implemented a UKF-based position
estimator to reduce measurement noise. Afther the position is
robustly estimated, we have a cascade PID controller to let the
aerial robot to track the iRobot.

Localization without landmarks, in the sepcial setting of
Mission 7, is hard to find existing solutions in literature.
The Mission 7 rules suggest using optical flow [14] to do
localization. But to our knowledge, no known optical flow
algorithm is able to meet the requirement of this mission.
Optical flow is build on several assumptions that usually been
violated easily in UAV working environment. Visual odometry
[21] may be another feasible localization solution. However,
after studied some visual odometry algorithms, we found that
even if the local measurement error of the visual odometer
is minimized, it will still accumulate and blow up when the
UAV travels a long distance, so the visual odometer cannot be
trusted globaly. To tackle this problem, we proposed a novel
method to get global position in the arena. This method extract
features from images of area boundaries as landmarks, and
localize the aerial robot by solving geometric problem and
estiamtion problem.

This paper is organized as follows. In section II, we discuss
our aerial robot mechanical design. Section III describes our
aerial robot attitude control algorithm. Section IV presents the
work of tracking iRobot. Section V devotes to the localization
algorithm. And in section VI we illustrate the whole software
architecture and briefly talked about the obstacle avoidance
algorithm. Finally a conclusion is given and future work will
be discussed.
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Fig. 1: 3D view of the aerial robot frame design

II. MECHANICAL DESIGN

To design a good aerial robot frame, we first list several
robot mechanical requirements.

Takeoff Weight 3kg
Flight Duration 10 minutes
Maximum Horizontal Speed 15 m/s

500 mm to 600 mm

Five (One downward and
the other four on sides of
the robot)

Rotor Shaft Distance
Number Of Cameras

These requirements are the result of balancing a number
of factors. First of all, the robot must be able to carry
more than 1000g payload, including LIDAR sensor, cameras,
computing platforms and communication devices. Second, the
robot should have high agility in order to cross the huge game
arena in a few seconds and brake quickly. According to [17],
the shorter the rotor shaft distance, the more agile the robot
be. Taking the propeller blade size into account, we choose the
shaft distance to be 500mm to 600mm. Third, the chassis have
to be properly designed to contain the payload. Cameras must
have clear field of view (FOV). Sensors must be protected
from vibration and external hit. And since the shaft distance
is small, the chassis must be compact.

Our preliminary design is satisfactory, as shown in Figure
1. The frame is made of carbon fiber, weighting only 600
gram. The robot, propeller and ESC system is DJI E600 Tuned
Propulsion System. With a 8000mAh Li-Po battery, the aerial
robot is able to hover 15 minutes with 3.2kg take off weight.

III. ATTITUDE CONTROL ON SO(3)

In our attitude control algorithm, we try to balance model
precision and engineering realizability. Dynamics of rotors and
propellers are extremely difficult to be correctly modeled, thus
we just use a measured speed-to-thrust function to convert
electronic speed controller (ESC) signal to propeller torque.
As for rotation representation, we choose the exponential
map from s0(3) to SO(3) instead of popular Euler Angle in
order to eliminate model ambiguity, because Euler Angle has
intrinsic singularity points but the exponential map can avoid
singularities [11].

A. Model of Aerial Robot Kinematics & Dynamics

Our robot model is a standard quadrotor system contains
four identical rotors and two sets of propellers. Each propeller

7‘2

roll

pitch

north
yaw
R €503 body frame

down
inertial frame

Fig. 2: The model of the aerial robot. Red frame is the inertial
frame and blue frame is the body frame. Both frames ought
to coincide with the origin O. They are separated here only
to illustrate axis directions.

generates torque AF; perpendicular to the plane on which
the robot base resides. We choose the local north-east-down
(NED) coordinate frame as the inertial frame, and the roll-
pitch-yaw coordinate frame as the body frame. Since we do
not consider translation in this case, both the inertial frame
and the body frame have their origins located at the center of
mass of the robot. Our aerial robot has X shape so roll axis
equally divide the angle between the arm of motor 1 and the
arm of motor 4. Directions of frame axes are shown in Figure
2.
Based on this model, we define:
R € SO(3), the rotation of the aerial robot expressed as
frame transform from the body frame to the inertial frame;
J € R3*3, the inertia matrix expressed in the body frame;
wb € R3, the angular velocity in the body frame;
7 € R3, the control torque generated by the actuators of
the robot, expressed in body frame as well.
With above definition, we present robot kinematic as a first
order system
R = Ra® 1)

which is deduced from the basic definitions and results of
matrix Lie group SO(3) [20].
Then by Newton-Euler equations we can write the robot
dynamics as
Jo? +wb x Juw® =14+ A )

where A € R3 is a disturbance term.

B. Control of The Aerial Robot

The control goal of our algorithm is to move the current
rotation R, to a target rotation R;. To explain the control law
we need first introduce the logarithmic map from SO(3) to
50(3).

For R € SO(3) satisfies tr(R) # —1, we define

¢
2sine

in which ¢ is cos™!(tr(R) — 1) and |¢| < . For a detailed
treatment to lie group and lie algebra, we refer readers to [12].

log(R) = (R—RT) € 50(3)
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Fig. 3: Relationship between propeller speed and thrust force.
The curve is neither linear nor quadratic.

According to [5], given Equation 1, the velocity control law
for tracking the target rotation is

& = kplog(R; " Ry) 3)

with k, be the propositional control gain.

If the target rotation is I € SO(3), then the tracking
problem is reduced to an regulating problem with the velocity
control law being

W' = kplog(R;")

The stability of the above control law is guaranteed if we
choose a natural candidate Lyapunov function

1
W(R) = SR,

b is controllable, our control law results in

W(R(t)) = —2k,W [5]

Since w

So the exponential stability is confirmed.

The control law only produce a matrix &°, from it we can
extract desired angular velocity wg. Then we employ three
cascade PID controllers to control the angular velocity of the
robot w® to this desired angular velocity w!. Each term of
wq, namely pitch velocity, roll velocity and yaw velocity,
is controlled separately. In one cascade controller, on the
first level we obtain desired angular acceleration using a PD
controller, and then on the second level desired torque is
generated by a PI controller with dynamics feedforward term.
The controllers are presented as follows.

Angular velocity control

wl = (W —wb)

b

- b b We
We = kpw, + kdd—;
Angular acceleration control
- b b _ +b
W = (wg — &)

t
T = kpi® +/ &ldt + Wb x Jub
0

Finally, torques on 3 dimensions are combined as @, from
which rotational torques and lift thrust forces of the propellers
are calculated. Forces and torques have to be converted to
propeller rotational speeds and further to ESC signals.
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Fig. 5: Step response of our controller

In literature, conversion between propeller rotational speed
and thrust force is not well treated. Some just ignore the
dynamics of rotor and propellers [18], while some adopt
complicated aerodynamics to rigorously analyze the relation-
ship [4]. Either method is not precise enough to meet the
practical requirement. To avoid over simplification of the
problem and make conversion process efficient, we conducted
experiments to measure a speed-force curve, as shown in
Figure 3. The curve is stored as a look-up table in the
algorithm implementation, with unknown points interpolated
from neighboring existing points. For a desired thrust force,
we check the corresponding speed level from the table, and
apply ESC signal to let rotor change to that rotational speed.

A subtle problem is control output saturation. ESC signal
is electronic signals that can change rapidly, while rotor rota-
tional speed cannot change instantly. So the response of rotor
speed must have a delay. Ideal rotor has no speed limitation,
thus the system delay can be compensate by forward the
control output to high value. However, real rotor does has
maximum speed, so the system delay is inevitable. We will
further elaborate this point in next section.

Figure 4 summarizes the entire control scheme.

C. Controller Performance Evaluation

We implemented the algorithm on the hardware platform of
DJI flight controller A2.

Its flight performance can be more accurately evaluated by
step response. We simulate our controller in Matlab. A step
response is generated to simulate a control command that make
pitch angle reach 40 degree. In Figure 5, blue line is the step
function, brown line is a conventional PID controller with fine
tuned parameters. Green line is a theoretical limit if the system
delay is known precisely. Purple line is the performance of
ideal rotor with no speed saturation limit. Orange line is
our controller. Our controller clearly outperforms conventional
PID controller in terms of response speed and overshoot
curbing.

I'V. IROBOT TRACKING

The tracking problem can be divided into two parts. First
part is an estimation problem. The aerial robot use its down-
load looking camera to identify and track the iRobot in its
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Fig. 4: The complete attitude control diagram. Pitch, roll and yaw control algorithms are the same, so the figure only describes

pitch control detail.

robot (t)

Fig. 6: Problem formation of the tracking problem.

view, and then estimate its position. The second is a position
control problem. The aerial robot performs moving action
according to its current status and position relative to the
iRobot.

A. Problem Formation

As before, the aerial robot has a body frame attached to
its center of mass, which is abbreviated as b. The top board
of the iRobot has a coordinate frame too, which is t in short.
The direction of axes of frame t is shown in Figure 6. Our
task is to robustly estimate the rotation R*® and translation
T* between frame b and frame t.

We could have combined R and T as elements of SE(3),
and do tracking control on SF(3), as [18] did. However, in
our case we don’t really need to control the rotation precisely.
Rotation and translation can be decoupled to be controlled
separately. And attitude control just realized rotation control.

So the tracking algorithm here only need to tackle position
tracking.

B. UKF Position Estimation

If the shape and the dimension of the iRobot top board is
known, we can find correspondences between the board corner
points and real points. The correspondences then form a PnP
problem, from which R and T can be solved. However, due
to image noise and motion blur, the solved translation is noisy.
A filter considering robot movement can significantly reduce
the noise. We use UKF to avoid the computation of Jacobian
matrices of state transition function and measurement function.
Although UKEF is slower than EKF, for state has small size,
the run time is roughly the same [25].

In this section, we first present our filter state definition,
then describe the detail of PnP solution to introduce our
filter measurement function. A filter performance evaluation
is followed at the end.

1) State Definition: To estimate R' and T%, we employ
a UKEF to eliminate measurement noise. The state of the filter
contains 7%, R, the velocity of the aerial robot v* and the
angular velocity of the aerial robot w”. Notice that the velocity
is expressed in frame t while the angular velocity is in frame
b.

Since R is a 3-by-3 matrix, matrix representation is not
suitable for filter state. A better approach is represent rotation
as quaternion, denoted as qtb. In the following text, we will
write R*® and ¢*® interchangeably without ambiguity.

Ttb
tb
i )

w?

xXr; =
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Fig. 7: Point correspondences in PnP problem

Q

The state update equation of the UKF z; = f(x;_1) is

Ttbi Ttbi,1 4 UtiflAt
T = qtbi — qtbi—l X q(wbi—lAt) (5)
’ vt vt +al,_ At
b b
w7 Wi

where function ¢() is a quaternion defined by the rotation vec-
tor walAt. The symbol x means quaternion multiplication.
at,_, is obtained from IMU measurement.

2) Image PnP Problem: To detect and track iRobot top
board from images. We use standard image processing tech-
niques to find corners of the board. By analyzing the config-
uration of corner points, we can find the correspondence of
image corner points and real points. This idea is illustrated in
Figure 7.

With point correspondences, we can solve the PnP problem.
The method invented in [22] is utilized with modifications to
reduce computation complexity. In the computation of local
minima, the original method iterates through all possible pitch,
roll and yaw angles. However, since the iRobot top board
keeps parallel to the ground, IMU can provides pitch and
roll angle measurement. Therefore, the algorithm only need
to search yaw angle. With this modification, the algorithm
complexity reduced from O(n?) to O(n) where n is the size
of search space. The solved R and T** are then be used as
filter measurement.

3) Measurement Function: Our measurement function y; =
h(z;) is simple:

Ttb
y 7 - ©)
R — Tt 7Tt :
" e e (0 atbAt) +wy 57—
w

In the equation, T and ¢ are the result of PnP problem.
a* and w’ are IMU data. The only intricate measurement is
velocity, because we have two sources of velocity measure-

ment. vti + a; At is the integration of IMU linear acceleration,
tb

while % is the differentiation of position measurement.
We use two adjustable weights w; and wy to give different
trust to the two measurements.

4) Filter Evaluation: The performance of our filter can be
seen from experiments. We let the iRobot stop on the ground,
and then make the aerial robot to hover above the iRobot.
We control the aerial robot to perform some movements and
compare the measurement position and filtered position. Two

sets of experiment record are depicted in Figure 8.

110

-30° 20 30
(a) Measurement record of a horizontal back-and-
forth movement. The movement is only in pitch
direction.

(b) The movement of this set of record is station-
ary hovering with large yaw rotation only. Blue
dots are moved aside to have better view.

Fig. 8: Experiment records. Red dots are measurement posi-
tion, and blue dots are filtered position.

In both records, red dots are the direct measurement position
from PnP solutions, while blue dots are filtered position. In
Subfigure 8a, a clear path is formed by blue dots, but red dots
don’t form any regular movement patterns. For the movement
in Subfigure 8b, since the aerial robot is in hovering mode,
then even if the robot has yaw rotation, its position should
not change too much. We can see blue dots do show little
horizontal movement noise, but red dots are too noisy to find
the stationary point.

C. PID Position Tracking Control

To move the aerial robot, proper target rotation command
must be send to A2 from Odroid XU via serial port. The
attitude tracking control algorithm in Section III makes the
robot tracks the given rotation command. The rotated aerial
robot gains acceleration in the pitch-roll plane.

Therefore, from position information provided by UKF,
we need to control velocity to reach a target position. To
control the velocity, acceleration has to be controlled which
is come from rotation angle. So a chain of controllers are
involved to convert target position to target rotation. This idea
is outlined in Figure 9. All of the position controller, the
velocity controller and the acceleration controller are standard
PID controllers.
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Fig. 9: The cascade position controller.

Fig. 10: Arena in IARC Mission 7.

The tracking controller performance can be viewed at https:
/Iwww.youtube.com/watch?v=MKkCJ_Tyyr9w.

V. LOCALIZATION

In TARC Mission 7, global localization of UAV is an
important step towards the realization of more complex iRobot
tracking and overall game strategy. To attain UAV position
in R? Euclidean space over the game field, an algorithm
which detects boundary lines in the field through camera image
processing is used.

A. TARC Mission 7 Field Settings

In IARC Mission 7, an indoor GPS-free arena on the ground
is provided. The field is 20 x 20 square meters with two white,
one red and one green boundary line as shown in Figure 10.

B. Localization Algorithm

This algorithm finds UAV’s position as well as its attitude.
Two methods, threelines method or corner method can be
used.

1. Preliminaries

According to the requirements of Mission 7, we model
the game field as shown in Figure 11. (We only demonstrate
the border lines in the picture. In the rest of the report the
word “lines” refers to the boundary lines. The white lines are
represented by thin black lines for illustration purposes.)

In the figure, the world frame is denoted by w, and the UAV
body frame by b. We set the origin of the world frame at the
corner where the y-axis lies on the green line as the model
shows. The position of UAV in the world frame is represented

| 20m |
2% \
4 %,
Y
e \

Fig. 11: Model of the gaming field.

by a 3-dimensional vector p*, where p1“, p2%, ps3“ are the z,
y and z coordinates relative to the world axis.
= ps ]

Each point on the ground can be projected to UAV body
frame through camera(s). (All points are represented in the
same form as vectors starting from origin, and will be treated
as vectors in algebra calculations.) We can only observe a
point from camera images, which is on a 2-D pixel frame.
There are four cameras on different sides of the UAV, so
points on four different pixel frames will be transformed into
four different camera frames separately. Since the cameras
are rigidly attached to the UAV, the points in the camera
frame will then be converted into body frame. Therefore, every
point appearing in the camera images can be transformed
into a unit vector in the body frame, as long as we know
the transformations. These transformations depends on the
intrinsic and extrinsic parameters of the camera, which are
related to the characteristics of the cameras and the mechanical
design of the UAV. We will jump over these topics and use
vectors in the body frame directly since we already know how
to convert points from images to body frame.

2. UAV Position Calculation

The key concept in this algorithm is finding the intersection
line of the two planes containing different boundary lines.
threelines method detects three different boundary lines, and
corner method detects a corner. The position of UAV can be
found by simple geometry based on the angles between the
planes and the ground. The attitude can be found in the form
of rotation matrix.

2.1. Threelines

In threelines method, we observe three lines out of four,
which must include a pair of opposite lines. As can be
observed from the model, opposite lines are parallel, which
means the intersection of any two planes containing these two
lines respectively is always a line parallel to them. Observing
any two points on a line will give the plane. This gives enough
information for obtaining R“?, the rotation matrix from body
frame to the world frame, since this intersection line is parallel
to an axis of the world frame, and is obtained in the body frame
as well. With this axis found and a gravity vector returned from
the accelerometer inside UAV, R“® can be found.

Figure 12 is a rough sketch illustrating the idea. For
demonstration, we assume the three lines observed are the
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dY is parallel with the red
and green line.

Fig. 13: Relationship between ¢ frame and body frame.

green, white and red line from left to right as shown in the
figure. g1, g2, r1 and r2 are random sample points on the
green and red line. qzl, qZQ, ¢%, and ¢®, are the corresponding
vectors in the body frame. ng and n’ are the normal vectors
perpendicular to the green and red planes correspondingly. d®
is the unit vector perpendicular to the plane consisting of ”Z
and nﬁi, and it is parallel to the y-axis in the world frame. We
can calculate the unit intersection vector d” by first finding ng

and n?, then calculate their cross product:

b x b
nf = 4‘Z§1X2i2‘
O (N
nb = 41X
" |q$1><q$2|
b X b
A Rl ®)
[ > n2

Now we have d®, and assuming we have an accurate enough
gravity measurement g”, we can find the rotation matrix
between the world frame and body frame. We define frame ¢
as an intermediate frame sharing the same origin as the body
frame. Figure 13 illustrates the relation between these frames.
¢ frame has its y-axis pointing to the same direction as the
world y-axis. Two angles 6 and ¢ can be derived from:

dy

¢ = arctan ot

P )

1 = arctan ——*—
db=4-df

where d4, d5 and dj represent xyz-coordinates of vector d°

in the body frame. Now we can get the rotation matrix from

RRS

xw

Py

Fig. 14: x-z plane cross section in world frame.

body frame to g:

1 0 0 cosf —sinf O
RY®= |0 cosy sine| |sin@ cosf 0 (10)
0 —siny cosy 0 0 1

We need also to find the rotation between ¢ and w. Now
we have their y-axis parallel, the only difference is an angle
between either their x or z axis. With gravity measurement
g°, we can find the angle 7 by:

0
7 = arccos ((¢°)T(—2z°)) = arccos ((Rgbgb)T o) an
1

which comes from the inner product of ¢° and —z°. Extra
attention are needed here to assure the angle is of the right
sign. Now we have the complete formula of the rotation matrix
between UAV body frame and the world frame:

R cosT 0 —sinT]| [1 0 0 cos@ —sinf 0
R%Y = 0 1 0 0 cos sin | [sin @ cos 6 0 (12)
sinT 0 cos T 0 —siny cost 0 0 1

After R*? is found, locating the UAV is very easy. The
procedure has two steps. First we narrow our target range down
to the line of intersection, then we use the third line (white
line) detected to find the point. Figure 14 shows the geometric
relationships between normal vectors and position of UAV.

We first transform normal vectors in body frame into world
frame with R“*. We use n’ as the normal vector of the plane
relative to the white line, so we have:

ne = R‘*’bng

n® = R“bnb (13)
n¥ = R“’nb
Based on the triangles, we find:

Py _ g1

W
P3 _ TNy

20—p7 ~ 03 (14)
p3 — Mo

20—p3 Ny

where ng, ng, and ngs represents the z, y and z coordinates
of ny respectively, similar for n;’ and ny,. With these three
equations, we can easily deduce the result of the position
vector p* of UAV:

w 20n; gy

20n¥ n% n%
w r1Mg1 w3
py =20+

15)

w w w w w
"2 (Zgl”ra +ngsnh)
—20n7 ngy

w
p - w W W o w
3 NGy nlg+ngsny,
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Fig. 16: Model for corner method - finding the attitude.

To calculate it faster and understand the way it works, solve
the first and second equations in Equation 14 and solve for
pYy and p¥ first. pg’ gives us the height of the UAV and then
py can be easily solved from the third equation.

2.2. Corner

When the UAV cannot observe three different lines in the
field, observing just one corner can also provide sufficient
information to localize the UAV, assuming that the height is
known. In this case, the attitude cannot be obtained as in
threelines method since we don’t have a parallel line pair,
and we will calculate the position first and obtain attitude
information afterwards.

The model for corner method is illustrated in Figure 15.
Two planes crossing each other on a line that pass a corner
point which in this figure is point 2.

Similarly, we first localize the UAV on this line. Then with
the height known from UAV sensors, we can find the point.
We can find the following geometric relations:

a = arccos (n%)T (—g)

w

P3

tana =

20—p% 16
B = arccos (ng)T(—gb) (16)
— P
tan 8 = pg,
The height p¥ is known to us, so we can get:
pzZQS—p‘gcota a7
ps = p§ cot B

This is the complete p* position vector derived from corner
method.

To find the attitude (rotation matrix) of the UAV relative to
the world frame, we need to make use of the corner observed
on camera. The model can be found in Figure 16. We define
a new frame ( as the intermediate frame to find the rotation
matrix. Similar to the threelines method, we also have two

300
g

= 100

1500
1500

1000

500 500

Fig. 17: Simulation result — red line is the real trajectory, blue
line is the estimation.

pairs of known vectors, one is gravity g* and ¢°, another pair
is f~ and f°, which point towards the corner. We first find
the rotation matrix R“S by finding ¢ axes in world frame:

w_ Y
— xXg
Y = Trexga (18)
W — P XYe
¢ fegxug]

where z¢, y¢ and z represents the unit ¢ axes representation
in w frame. Rotation matrix R*¢ = [z¢ ¢ zg‘”]T
The rotation from ( frame to body frame can be found in

similar way:

b I

T

b _ f'xg

Ye = 1ro% g7 19)
b= T Xy¢

¢ [ty

. . T
Rotation matrix R% = [22 42 22" , and RS® = (R*)T.

As a result, the rotation matrix from body frame to world
frame is:

R*Y = RWCRCP (20)

C. Simulation Results

Our simulation results in matlab is shown in Figure 17.

In this simulation we assumed the yaw angle of the UAV
doesn’t change, so we can always decide which line is which
on camera images. We added noise to the gravity or height to
simulate values returned from the sensors. We also applied an
UKF Filter to smooth the trajectory. The result is satisfying
and the estimation doesn’t change much with the noise.

VI. SYSTEM INTEGRATION

In this section we presents our hardware architecture and
software architecture. Hardware part lists all major hardware
components and communication protocols among them. As
for software architecture, since all our programs are written
in C++ or Python within the Robot Operating System (ROS)
framework, we use mainly the terminology of ROS, such as
node, topic, tf and so on through out the discussion.
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A. Hardware Architecture

The core hardware components are autopilot system and
high level computing platform. We use A2 autopilot set
manufactured by DJI. A2 includes a main controller, a power
management unit, a IMU and a GPS module. Both the IMU
and the PS module are industrial precision. Our high level
computing platform is Odroid XU from company Hardkernel.
A2 and XU are linked by serial port, on which messages
contain autopilot sensor data and control data are exchanged.

A2, ESCs, motors and propellers form the dynamic propul-
sion system. Among them are standard connections.

Odroid XU connects to two sensors via USB. One is a high
speed camera, the other is LIDAR. LIDAR also need 12V
power supply, which is extracted from the battery.

Images of four cameras are sent to ground station for further
processing. The image transmission is handled by two sets of
image transmitters. The transmitters send images via 5.8GHz
radio signal to the ground station.

Odroid XU runs critical programs to monitor the UAV.
Monitoring messages will be periodically sent to the ground
station via WIFI connection. The ground station also send high
level navigation information to Odroid XU through WIFIL.

The model of hardware components are listed in the
following table.

Autopilot | DIT A2
Computing platform | Hardkernel Odroid XU
Rotor | DJI E600 Propulsion System
Propeller | DJI E600 Propulsion System
ESC | DJI E600 Propulsion System
Camera | ZWO ASC120MC
LIDAR | Hokuyo UBG-04LX-FO01
Image transmitter | DJI Lightbridge

B. Software Architecture

Our aerial robot has two computing devices where programs
reside in. One is the microprocessor of A2 controller, the
other is the system-on-chip (SOC) of Odroid XU. The program
in A2 controller exactly implements the algorithm discussed
in Section III. It is a single sequential program without any
complex structure. While the programs in Odroid XU do
have complicated relationships that need detailed explanation.
So in our software architecture presentation we didn’t show
the structure of the low level control program on A2. It
is only be indirectly presented as serial_to_uav in the
architecture. serial_to_uav is a program on Odroid XU
that communicate with A2 via serial port. Therefore, the
architecture discussed here is only related to the programs on
Odroid XU and the ground station.

Both of Odroid XU and the ground station run Ubuntu
Linux and have ROS hydro installed. With the aid of ROS,
Odroid XU and the ground station can be combined as one
virtual machine once they are connected to the same LAN,
which is achieved by setting the ground station as a WIFI
access point and let Odroid XU connect to it. Therefore
programs on Odroid XU and the ground station can share
communication messages without worrying what intermediate
channels they are using.

Using ROS terminology, a node refers to a program. Pa-
rameters mean arguments passed to a certain program, or
node. Topic stands for a inter process communication (IPC)
message between two node. A node that broadcast a topic is
called publisher, while a node receives a topic is named as
subscriber. Although a topic is sent as broadcast message, to
simply description, we still say a topic is sent to a specific
node if that node is the only subscriber. Package is a file
management mechanism in ROS framework. Multiple nodes
can be organized and managed in one package. More details
can be found from ROS official tutorial [1].

In Figure 19, every rectangle represents a ROS node. Their
names are self-explanatory.

obstacle_avoid reads in the LIDAR sensor topic. From
sensor reading it detects nearby obstacles. Obstacle informa-
tion is packed in an output topic which is sent out from this
node. This node itself will also devise a control strategy from
the analysis of obstacle positions. The control command topic
sends to uav_cmd_ctrl.

uav_cmd_ctrl is the core control node in the whole sys-
tem. This node subscribes various topics of control commands
from four publishers. It acts as an arbiter to select the most
appropriate command, and then send this selected command
as a topic to serial_to_uav.

iRobot_tracker implements the algorithm in Sec-
tion IV. Its control command is packed in a topic
to uav_cmd_ctrl. Also, the position of the iRobot,
packed in another topic, is reported to a strategy maker
strategy_simulate.

uvc_camera is the node in ROS official repository that
read camera using USB interface.

serial_to_uav. This node is crucial because it is the
only bridge between all other nodes and low level controller.
It reads sensor data and send control command to A2. Several
nodes will subscribe sensor data for various purpose. The
control command is obtained from node uav_cmd_ctrl.
After read the command from ROS topic, this node send the
command to serial port.

urg_node is a modified version of Hokuyo LIDAR sensor
reading node in ROS repository. It not only read raw LIDAR
data, but also use IMU data to compensate LIDAR angular
deviation.

strategy_simulate. A mission process simulator is
important for the aerial robot to have global planning abil-
ity. The principle is let simulated iRobots run in the arena
constructed using robot simulation software Gazebo. The
simulator keeps receiving real iRobot position and aerial robot
position to correct its simulation. As long as the simulation
resembles the real game process, a planner can make control
decision base on the position of robots in the simulator. The
planner control is published as ROS topic.

uav_pose_filter use UKF to estimate the pose of the
aerial robot, as presented in Section V.

field_localize contains two sets of algorithm de-
scribed in Section V. Together with arena_detect and
uav_pose_filter, a relatively precise global aerial robot
position measurement is computed.

image_read is a node read four images at one time from
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Fig. 18: Hardware architecture of our aerial robot system.
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Fig. 19: Software architecture of the robot. Nodes on the left
side run on the robot, while nodes on the right side run on the
ground station.

Ground Station

Lightbridge. The images are published as a single topic to
arena_detect.

iRobot_identify is one of the most significant nodes.
It realize the algorithm illustrated in Section IV. The calculated
aerial robot position and iRobot position will be transfered
to strategy_simulate for simulation purpose. Also a
control command is made for uav_cmd_ctrl to control the
aerial robot.

arena_detect is a image processing node to detect the
boundary of the arena.

Currently, not all nodes are ready to use, because we are still
in early stage of software development. We anticipate to finish
major nodes relevant to core functions before the competition
of 2014. A complete software requires another year to finish.

VII. CONCLUSION & FUTURE WORK

In this report we explain the major components we designed
and implemented in order to solve IARC Mission 7. Each

part is proved, either by real experiments or simulations, to
be a promising building block of a whole functional robot.
We will further develop the algorithms and models of each
part, transfer simulations to real systems, and refine the system
integration continously.
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