
Autonomously Herding Ground Robots in a
GPS-Denied Environment

MIT UAV Team∗

Massachusetts Institute of Technology
Cambridge, MA 02139

mit-uav-core@mit.edu

Abstract

This paper describes MIT UAV Team’s full system for Mission 7a of the Inter-
national Aerial Robotics Competition (IARC). Our system involves a hardware
layer and vision, modeling, communication, and planning software layers to herd
Roombas in an environment denied of external navigation aids such as GPS or large
stationary points of reference. The vision component processes the camera input
from a GoPro attached to the aerial vehicle to identify Roombas and gridlines at
each frame. These partial observations of the field are combined to create a global
model, which allows for vehicle localization and Roomba tracking. Using this
model, our vehicle utilizes a heuristic strategy for high-level coordination planning
consisting of a finite state machine, where each state is a hard-coded "behavior
module".

1 Introduction

The seventh mission of the IARC involves interaction between an aerial vehicle and moving ground
robots. In particular, Roombas moving in a noisy trajectory must be guided across one side of a square
field within a time constraint all while avoiding four moving obstacles in the field. The interaction of
an agent with moving objects in an environment has applications in the use of aerial robots in moving
platforms such as ships, trucks, or other air vehicles.

There has been extensive previous work on aircraft control and navigation in noisy environments
[6, 5, 1]. However, few of these works involve the aerial robot interacting closely with moving objects
in the environment. [4, 3] In such cases, determining the position of the aircraft is crucial.

Traditionally, the aircraft position is determined using a combination of a global positioning systems
(GPS) receiver and an inertial measurement unit (IMU). However, this solution is prone failure when
the GPS signal is weak or unavailable, as in indoor environments. In such cases, the localization
task is handled with a vision system combined with other on-board sensors.[2] These methods, such
as Simultaneous Localization and Mapping (SLAM), generally rely on large stationary points of
reference such as walls.

In our work, we are constrained with an environment denied of all external navigation aids except for
gridlines on the field. As such, we introduce a localization method based on gridline tracking which
allows the aircraft to build a global model of the field from frame-level observations. Our localization
and mapping method is combined with a heuristic strategy for high-level coordination planning to
complete Mission 7a of the IARC.

In the following subsection, we describe this mission in more detail. In the next section, we give
a high-level systems overview of our approach. In Section 3, we further describe the four main
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subsystems. In Section 4, we include our results on a 3-D simulation of the mission created in Gazebo.
The conclusion and future steps are discussed in Section 5.

1.1 Mission 7a

The arena consists of a 20-by-20 meter field with three red sides and one green side. The entire field
contains gridlines that divide the field into 400 one-by-one meter squares. The UAV hovers near one
of the corners of the arena at the start of the game. During the mission, it cannot hover above three
meters from the ground nor leave the arena for more than five seconds.

There are 10 Roombas initially placed around the center of the arena facing outwards. Every 5
seconds, a trajectory noise of ≤ ±20 degrees is added independently to each Roomba, and every 20
seconds, all of the Roombas rotate 180 degrees. Otherwise, the Roombas move in a straight line at
0.33 meters per second.

In addition to these 10 Roombas, which the UAV must herd, there are also four obstacle Roombas
with large poles of varying length on top that the UAV must avoid. The obstacle Roombas are placed
5 meters from the center, and all travel in clockwise in a fixed circular motion. Figure 1 depicts the
arena near the start of the game.

Figure 1: Simulated top view of the arena at the start of the game. The four obstacle Roombas are
shown as red circles, the 10 regular Roombas are closer to the center facing outwards, and the UAV is
hovering over the center of the arena.

The mission consists of autonomously herding the 10 Roombas with a UAV across the green side
of the arena. The UAV acts on a Roomba by tapping the top of the Roomba to move it 45 degrees
clockwise. Additionally, the UAV can also land in front of a Roomba, which activates the Roomba’s
collision sensor, turning it 180 degrees. The task of the UAV is to herd at least seven Roombas across
the green side of the arena within 10 minutes.

2 System Overview

The full Roomba herding system can be cleanly divided between hardware and software and then
further divided by the different internal mechanisms. The hardware system is a modified 3DR Solo
Drone equipped with a camera and enhanced with additional optical flow and rangefinder sensors.
Through these onboard sensors, the drone perceives the environment, builds a model, then acts on the
environment to solve the task. The software is broken down into four general subsystems: vision,
modeling, planning, and communications.

Vision and modeling work in tandem to construct an immediate belief model and a belief model over
time, respectively. Planning then chooses a particular behavior among several hard-coded behaviors,
along with a sequence of actions dependent on the current behavior. It utilizes the belief model
constructed by the modeling component. Finally, the communications part consists of the Mission
Executive component and the flight controller. The Mission Executive component is necessary for
filtering the sequence of actions to be sent to the flight controller for obstacle avoidance, tapping, and
validating that the drone is within arena boundaries. Our system, with the discussed components, is
shown in Figure 2.
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Figure 2: A diagram depicting the drone perceiving the environment, constructing an internal
representation, the model, of the environment, and executing a planned path. Processing is done
end-to-end on ground, mapping observations of the environment from onboard sensors to actions.

3 Subsystems

3.1 Hardware and Communication

The hardware and communication systems used for this project is based off the 3DR Solo Drone.
Rather than building a custom hardware and communication solution, we opted to use the Solo
based on reliability of the Pixhawk, strength of the open-source community, and familiarity with
ArduPilot, the autopilot firmware. In addition to the Solo Gimbal and GoPro, we equipped the Solo
with a LIDAR Lite optical rangefinder, a PX4Flow sensor, and a kill switch. The design decisions
and interactions between these hardware components are discussed in the following section.

The flight controller used onboard the Solo is the latest stable developer release of the quadcopter
version of ArduPilot – ArduCopter PX4-quad version 3.4.0. The Solo uses a Pixhawk 2 to run
ArduCopter onboard. The Mavlink protocol is supported by this software, which is used to send and
receive information between the groundstation and the quadcopter’s autopilot. Through Mavlink, data
such as the quadcopter’s current yaw angle, it’s arming state, and it’s local position are accessible.
Additionally, commands can be sent through Mavlink to instruct the quadcopter to takeoff, land,
navigate to a position, and more. The open-source ArduPilot community is very active, and this
year was particularly advantageous to use the Solo as much work was done on GPS-denied navigation.

The PX4Flow sensor can be seen as a hardware substitute in GPS-denied environment. It is an optical
flow sensor that tracks the change in pixels of a point and estimates velocity. This sensor reading is a
substitute for the velocity received from a GPS signal, and allows the quadcopter’s onboard estimate
of position to converge. Coupling the optical flow sensor with the LIDAR Lite optical rangefinder
allows for a precise measurement of height that feeds into the velocity and position estimates. These
two sensors enable precise indoor navigation of the Solo and reliable autonomous flight.

The kill switch was built to take advantage of the 3DR Solo’s electronic speed controller (ESC)
functionality. The Solo’s ESCs automatically cut power to the motor as soon as the signal wire is cut.
This is important, as we are able to cut power to the motor without needing to account for the total
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80A of current that can be sent to the motors at maximum. Our design of the kill switch enables us to
cut all four signal wires to the motors at the same time, leading to an instantaneous cut to the motors’
power. These signal wires are sent through a relay that has a separate remote controller. This system
is completely independent of the groundstation and on-board autopilot. Two remote controllers are
provided and are on a different radio frequency than any other component onboard which eliminates
radio interference.

A horizontal plexiglass plate is attached on the bottom of the quadcopter attached to the legs of the
Solo. This custom plate is intended to be the piece of hardware that activates a Roomba upon landing.
A hole is cut for each of the three optical elements on the bottom of the Solo: the optical flow sensor,
the optical rangefinder, and the downward facing GoPro camera.

3.2 Vision and Modeling

Figure 3: Representation of vi-
sion processing stages in order

The vision system
is the first level of processing. It takes in the raw camera input
and outputs a list of gridlines and Roomba positions represented
in pixels. The transformation happens over a number of stages using
a mixture of OpenCV functions and custom image processing code.
A GoPro Hero 3 attached to the bottom
of the drone using a Gimbal provides a continuous downward
facing camera stream. The first stage of vision processing
reads in the GoPro image and debulges it to remove warp effects
from the GoPro’s large field of view. The debulging is accomplished
through a spherical remapping tuned to the GoPro’s focal length,
which produces a resulting image with straightened gridlines.

Now that the camera feed is straightened,
image processing begins by identifying Roombas. The image
is thresholded by red and green, noise is removed, and connected
components are identified. The connected components are
then pruned to identify potential Roomba candidates (and remove
other similarly colored objects, such as gridlines). The centers
of the potential Roomba candidates are calculated, and saved.

The Roomba
identification is placed on hold and the gridline identification begins.
The image is thresholded to produce a binary image representing the
white areas of the camera frame. The binary image is then cleaned
to remove noise from white specks that aren’t a part of the gridlines.
Using a Hough line transform, the image is then fitted with
a number of lines represented by starting and ending pixel positions.
Over the remainder of the processing steps, these lines will
be transformed to be represented by their line number on the field.

Dealing with the camera frame directly is now complete, and
line processing & pruning begins. The primary axes are identified.
Duplicate lines are then merged using information about the
line’s starting/ending points and angles. A number of pruning steps
then occur: short, misoriented, floating, and intermediate endlines
are all processed out to deal with a number of edge cases. Endlines
are determined by looking for lines that act as boundaries which
no other lines extend past. The pruned lines are then reprocessed
using the new endline information, and incorrectly removed lines
are re-added. We now have a set of lines represented in pixels each
of which corresponds to a distinct gridline in the camera frame.
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The modeling system deals with the next level of processing:
transforming vision’s gridline & Roomba estimates into continuous
position estimates for the UAV & Roombas. Most of the modeling processing happens closely in
tandem with vision, with data and processing steps being traded back and forth.

Modeling takes vision’s gridline estimates and compares them to gridline estimates from the previous
frame. Additionally, modeling maintains a few persistent variables: the UAV’s integer coordinate
position, the UAV’s floating point coordinate position, and the current axis of rotation. Combined,
this information allows for a persistent beliefs about gridline numbers and UAV positions.

Figure 4: UAV & Roomba
Model

The current
gridlines and previous gridlines are compared and greedily merged.
The center of the camera frame is considered to be directly below
the UAV: if a line was previously on one side of the center and is
on the other after the update, the believed UAV’s integer coordinate
position is updated accordingly. The line numbers are then updated
based on the new belief of the UAV’s position. A corrective step
occurs to check that no unreasonable line numbers are predicted
(lines that would be off the grid) and to ensure that the endlines
identified from vision have the correct numbers. Finally, the
UAV’s floating point coordinate position is updated by comparing
the distance to the immediate gridlines on the UAV’s right and left.

The Roomba model persists and updates information
about Roomba beliefs across frames. Game rules are used in the
update step: Roombas move at a consistent velocity and turn around
every 20 second. Each Roomba is represented by a coordinate
position, an angle, and a belief certainty that decays over time.

Modeling takes vision’s identified Roombas in the camera feed (represented in pixels) and transforms
them into grid positions (in the same manner that the center of the camera is transformed into the
UAV’s floating point coordinate position). Next, modeling updates the Roomba positions by greedily
merging the observed Roombas with Roombas from the model. Missing Roombas that should be in
the camera frame (but aren’t) are pruned.

3.3 Path Planning

Vision and modeling act as the UAV’s peripheral system; they read in sensor input and translate it to
a believed view of the world. Planning takes this model and treats it as a reality. As the final level of
processing, the planning subsystem directs the communication system where to move the UAV to on
the field.

Initially, we attempted to apply deep reinforcement learning to the planning problem directly. We
provided a deep RL agent with the true state of a simplified, two-dimensional simulation, and we
rewarded it when it successfully tapped Roombas and when it scored points. We heavily penalized
crashing into obstacles and leaving the arena.

With these rewards in place, the agent quickly learned to stay within the bounds and to avoid the
obstacle Roombas. It eventually learned how to tap Roombas. However, at this point, learning
plateaued, and the system did not improve further. Perhaps this was due to our reward function being
too vague, but regardless, we sought other strategies.

We made a user-controlled, two-dimensional simulation to examine how humans would perform if
they had full control of the UAV. We soon discovered that we could consistently beat the challenge
(score seven Roombas) with a little bit of practice. Having had this experience, we realized that
human players adopt a handful of distinct strategies at different stages of the game. These strategies
complement one another in such a way that makes successful play possible.

A number of such strategies were developed and then tested in our Gazebo simulator.
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The "follow" strategy “babysits” the topmost (closest to the green line) Roomba in the Roomba
model. This refers to following a Roomba and tapping it whenever its path deviates from that of the
direct route to the goal line. Humans use this strategy when they mentally commit to scoring a
particular Roomba.

The "circle" strategy loops around the arena to get a sense of where all of the Roombas are. After all,
only a fraction of the arena floor is visible at any given time.

The "defensive" strategy travels along the out-of-bound edges and taps Roombas that are in danger of
leaving. This helps prevent potential future points from being lost and is an essential part of scoring
seven or more Roombas.

Our planning strategy involves alternating between these strategies when certain criteria of the belief
state are met. Time is an essential component of the transition decisions, but the locations and angles
of the roombas also matter. Note: planning controls both the movement of the UAV and when it
decides to land and tap a roomba.

3.4 Tapping

Tapping roombas involves a coordinated effort between the vision, modeling, and comm systems.

Vision operates in two modes: the “observing” mode described above and an additional “landing”
mode. The secondary mode is used when tapping to ensure that estimates don’t get confused when
the UAV descends. In landing mode, vision disables position processing/updates and switches to
tracking the target’s pixel position, which is communicated to the communication system.

The communication system executes tapping by attempting to keep vision’s reported pixel target in
the center of the camera feed. This is done by linearly adjusting the speed based on the distance of
the pixel target from the camera’s center.

4 Simulation Results

Our end-to-end, three-dimensional simulation of mission 7a incorporates all of our major subsystems:
vision, modeling, planning, and comm. We simulate a camera in software, we update our belief state
of where all of the roombas are, and we query planning to determine the next action to take.

Our system has performed well in our simulations. We’ve been able to score 7-9 roombas reliably,
and each component of the system is working as expected. Due to the additional unconsidered
factors of noise and latency, is unlikely that these numbers will be replicated in a full real hardware
test with the current system.

5 Conclusion and Future Steps

In summary, mission 7a is a difficult hardware, computer vision, modeling, and path planning
problem that requires the integration of multiple complex systems to successfully complete the
challenge. By identifying and abstracting these four components out of the problem, we tackled each
separately, connecting their inputs and outputs in one final step at the end. This proved to be an
effective approach towards this mission, and it led to successful performance in simulation.

As a future step, we would like to improve the path planning subsystem. Currently, the transitions
between the behavior modules are handcrafted. We could instead use reinforcement learning [7] to
learn a transition policy on the aircraft behavior. Abstracting the actions to a high-level behavior
transition rather than a low-level motor control allows for a reasonable state space to learn an optimal
policy. This approach would be a good combination of an expert system, where coordination
strategies are hand-engineered, and a statistical system, where coordination strategies are learned
from experience.

More ambitiously, another future direction is for the aircraft to learn coordination strategies directly
with reinforcement learning. This would require (1) an incredibly apt reward function in order to
steer learning towards viable modes of play and (2) deep neural networks for function approximation,
as the state space would be very large. A deep reinforcement learning approach, while

6



computationally expensive and potentially an overkill for the challenge, would greatly expand the
potential of the UAV agent in terms of the complexity of its strategy.

In concert, such an advancement would suggest a form of hierarchical deep reinforcement learning ;
we would learn both the modes of play and the transitions between them. Although we tried using
deep reinforcement learning to solve the entirety of the planning challenge, we didn’t segment the
problem in this way. This formulation of the problem to the RL agent could enable it to find a
suitable solution in the now smaller state space.

One might also imagine ways to make the problem more difficult. The predictability of a Roomba’s
random motion makes this problem far easier for two reasons. One, it takes a few minutes for
Roombas to begin leaving the arena on their own, and two, it allows modeling to make some
assumptions about the state transitions. An interesting change might be to alter the form of random
motion at a random point in the game. This would require the agent to intelligently adapt to a new
strategy on the fly, suggesting a much. Mission 7a withheld from this level of uncertainty, but there’s
a lot of potential for for these types of challenges, and of course a lot of potential real world
applications in the same space.
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