
Autonomous Quadcopter for Multiple Robot
Tracking and Interaction in GPS-Denied

Environments

George Lachow, Alexander Khoury, Jason Quach, Eric Ho,
Ian Schroeder, Junru Ren
IEEE at UC San Diego

University of California, San Diego, La Jolla, CA 92093
georgelachow@gmail.com akhoury727@gmail.com j6quach@gmail.com erho@ucsd.edu

ian.schroeder@ieee.org j.ren@ieee.org

ABSTRACT

This paper describes the entire Unmanned Aerial Vehicle designed by IEEE at UC
San Diego to compete in the International Robotics Competition. The system capa-
ble of interacting with objects, avoiding obstacles, within a GPS-Denied environment
autonomously. Sensing the environment is strictly performed through a downward fac-
ing camera with a variety of sensors in order to establish positional estimates about
the aircraft itself and the external agents. Immediately following these estimates an
appropriate reaction is incurred. A majority of our system testing was performed in a
software in loop simulator, enabling us to feasibly assess and evaluate a multitude of
situations.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) were originally designed for military applications, but
have expanded to many other applications such as commercial, recreational and surveillance.
UAVs operate with a varying degree of autonomy, ranging from being piloted remotely by
a human to piloted autonomously through on-board computing. While robust methods for
object detection and avoidance are critical to this task, tracking and interaction with mov-
ing objects has not been proven thoroughly as of yet. Autonomy without external aids such
as Global Positioning Systems (GPS) for positioning is becoming ever more paramount for
indoor or military applications where GPS may be limited or unavailable. Mission 7 of the
International Aerial Robotic Competition (IARC) [1] seeks to explore robust methods of
interacting with moving obstacles while building the foundation for indoor localization.

In the first part of Mission 7 of IARC, Mission 7a, participants must develop a fully au-
tonomous UAV to track randomly moving objects and interact physically with them in

Page 1 of 12



order to guide them across the field to a designated location while avoiding dynamic obsta-
cles. The indoor area consists of a field that is 20x20 meters, with grid lines every meter.
The field is populated with 14 Roombas, 4 of which are obstacles with up to 2 meter vertical
poles while the remaining 10 move in a semi-random pattern and have paddles on top which
allow interaction.

The problem has 3 key main challenges, localizing the aircraft, detection and tracking of
obstacles and targets, and optimized planning and control in order to complete the mission
within a time constraint. Because of the clear problem definitions, we split up our solu-
tion into 3 main areas. The first is Self-Estimation, localizes the aircraft’s absolute position
relative to the grid. The next area of focus is Perception, identification and tracking of
objects, along with determining the objects position relative to the aircraft. The third fo-
cus is Planning, which generates high-level trajectory commands to take to optimize herding.

This is the first time IEEE at UC San Diego has participated in IARC. Since Mission 7a has
been active for a couple years, we were uncertain to what would be most challenging. With
Mission 7b having a similar format, our goal was to attempt to solve part A, while building
a strong foundation for the follow year. Building a future proof airframe was paramount
for in the event of changing the electronics package. Also, we aimed to create a robust and
accurate software in the loop simulator for easy development of our software package.

2 SYSTEM OVERVIEW

Our system is split up into two main components, consisting of a aircraft and a Ground Sta-
tion (Figure 1.). The aircraft handles all low-level flight control processing on-board while
also sending telemetry, sensor information and a video stream to the ground station. The
information from the aircraft that is sent to the ground station is processed on a computer
to determine the high-level flight instructions.

Figure 1: System Block Diagram

2.1 Quadcopter

Our aircraft consists of mainly commercial o↵ the shelf components.. To ensure safe flight in
the event of loss of communication, low-level flight controls are handled by a Pixhawk using

Page 2 of 12



the Ardupilot flight stack. This is independent of the high-level flight instructions being sent
from the ground station. An on-board computer receives flight instructions and sends the
instructions to the Pixhawk over serial. The computer also receives the camera feed and
telemetry data from the Pixhawk and sends it to the ground station.

Figure 2: Aircraft Block Diagram

2.1.1 Airframe

The airframe chosen for mission 7a was a 640 class quadcopter. Because e↵orts were focused
on software, a commercial airframe that included electronic speed controls, motors and
propellers designed for light duty cinematography was chosen. This ensures a lightweight,
well developed package designed for long flight times with additional payload.

2.1.2 Propulsion

Propulsion is achieved with four Hobbywing XRotor 40A ESCs powering T-Motor AntiGrav-
ity MN4006, 380kv motors paired with 15 inch Tarot 1555 foldable propellers. This motor
and propeller combination can produce a maximum total thrust of 8.9 kilograms while con-
suming 360 Watts, far above aircraft weight. Although, these motors are extremely e�cient
at low RPM, consuming only 75 Watts at 50% throttle.

2.1.3 Power Distribution

The aircraft is powered by a 6 Cell, 22.2V 4500mah Lithium Polymer (LiPo) battery. The
battery chosen was the largest watt hour pack, at 99.9Wh, we were allowed to bring on
an airline. Without the sensor package, the vehicle’s flight time is 35 minutes at 1.83kg.
With the full payload, the operational flight time is an estimated 20 minutes. Two voltage
regulators are on the aircraft. One is used to supply 5V to the companion computer, USB
camera and high power WiFi dongle. The second is used to supply 5V, propulsion current
draw and battery voltage to the flight controller.

Page 3 of 12



2.1.4 Flight Termination System

Our Emergency Flight Termination was made possible through a modifying the IARC Com-
mon Kill Switch reference design. We had to modify the design because we have a higher
voltage battery pack, at 28.2V peak compared to 18.8V, along with the motors capable 64
Amps compared to 35 Amps continuous. We added 3 additional N-channel MOSFETS to
have a total of 6. We also had to replace the 5V linear voltage regulator with another 5V
linear voltage regulator rated up to 28.2V.

2.1.5 Sensors

The Ardupilot flight control stack was originally built with GPS for holding a position. Since
we cannot use GPS for positioning, holding a position in a hover is achieved with a PX4Flow
optical flow camera which is solely used for the low-level flight control of the Arducopter flight
stack and serves as a safety redundancy in the event of a loss of communication. The Pixhawk
flight controller includes one barometer, two 3-axis gyroscope, two 3-axis accelerometers and
a 3-axis magnetometer. Due to the built in barometer poor accuracy, we opted for lidar
for altitude. We chose a LIDAR-Lite v3 for altitude which has a range from 0-40m and
an accuracy up to 2.5cm. A down-facing camera with a wide angle lens is mounted to the
bottom of the aircraft for vision needs.

2.1.6 Communication

There are two primary communication links from the aircraft to the ground station. The first
communication link is primarily intended for triggering of the emergency safety switch but
also serves as a method of switching the aircraft from manual mode to autonomous mode.
This link is a standard 2.4GHz spread spectrum radio controller and receiver. The second
communication link in our system supports all communications between the aircraft and
the ground station computer, including video streaming, telemetry, sensor data and aircraft
commands. This link is through a 802.11b/g/n WiFi Link using an USB WiFi Module with
a maximum bandwidth of 150Mbps.

2.2 Software

The software component of the aircraft is built on a Raspberry Pi 3 running rasbian, with
a ROS and MAVROS software stack to enable remote communication and live streaming to
a nearby groundstation. The Ardupilot flight control stack handles low-level flight controls
for determining flight path and control of the vehicle, while the majority of the computation
is handled o↵board via a nearby groundstation running Ubuntu 14.04 with MAVROS.

3 PERCEPTION

We perceive the environment entirely through a downwards facing camera with a large field
of view. The problem in which perception solves is the detection and tracking of objects
of interest within the arena. Here is where the computer vision suite resides, processing
one frame at a time from the camera feed to solve these tasks. Additionally, the use of

Page 4 of 12



Camera
Detection: Agent of

interest

Classification: Roomba,
Non-Roomba or

Obstacle

Estimation and
Tracking: Non-linear

Kalman Filter

Sensor Data: Altitude,
Gyroscope, Quadcopter

Velocity ...

Path Planning:
Decision-Making

Figure 3: The computer vision pipeline to detect and track roombas

external sensory data from the Pixhawk enables additional information in which our tracking
algorithm can utilize in order to develop more precise estimates for any particular object.
The information calculated from each frame is than forwarded to our path planning and
state estimation suites in order to react to and perform a variety of decision making tasks.

3.1 Detection and Classification

The roombas have very distinct colored features, with red and green paddles, therefore a
threshold is performed over a range in the HSV colors-space to identify an agent of interest.
This was preceded by a Gaussian Blur in order to remove small perturbations within the
frame. Its pixel coordinates are than calculated by locating the center of its contour and a
conversion is performed as explained in the next section.

However, a more robust and planned approach to solving detection is currently in progress.
A color threshold alone can be e↵ective in certain situations however more often than not
lighting can perturb its defining feature resulting in poor detection performance. Therefore,
we plan on collecting real world data with a machine-learning approach in mind to develop
a more robust detector and classifier. Two possible sub-approaches for this task that we are
testing involve hand-engineered feature extractions through SIFT descriptors and histogram
of gradients with a support vector machine classifier or a neural network as an end to end
algorithm of which learns the features itself from our dataset.

3.2 Position and Pose Estimation

A combination of both Pose Estimation and Linear Projection Estimation is utilized, oper-
ating on two perspectives of where an object is located in order to develop a more robust
estimate. The use of a Kalman Filter based approach can fuse together these two estimates
enabling for a predictive and stable holistic estimate for which state-estimation and path
planning can operate on for decision making. This ultimately allows us to track multi-
ple features of any particular agent, particularly the positional coordinates, velocities, and
orientations.

Page 5 of 12



3.2.1 Pose Estimation

The pose estimation stack is designed to allow for the tracking of all visible roombas in
the frame. Before the corner features of the roombas can be extracted from the video feed,
several preprocessing steps are taken. First, a Gaussian filter is applied to blur the image
slightly, removing noise. Next, a multi-threshold algorithm is applied to isolate the roombas
from the background. This step is also able to distinguish between the two colors of roomba
on the field. Once the relevant features of the roomba are known, they are applied to the
Perspective N-Point (PnP) algorithm to determine the roombas distance and orientation
with respect to the video source. Since the intrinsic parameters of the camera are known in
advance, this is a fairly simple step. The parameters are determined as follows:

The Pose Estimation node. When combined with the orientation of the camera relative to
the field (more math), the angle at which each roomba needs to be moved to orient with the
goal line is known to the aircraft and can be utilized in flight planning.

3.2.2 Linear Projection Estimation (LPE)

Given the constraint of using a down-facing camera, the center of the camera acts as the
aircraft’s origin relative to the arena. However, we must account for the aircraft’s pitch and
roll, where the center of the camera is not facing perpendicular to the floor. Therefore, a
readjustment of the projection of the aircraft’s origin is performed by operating on gyroscopic
data to re-project this origin. After obtaining the aircraft’s origin lines are drawn between all
detected roomba origins to the aircraft’s origin in pixel coordinate values. A conversion from
pixel to world coordinates must be performed in order to calculate the true relative position.
Using altitude data, we can rescale the line magnitude to correctly determine the distance
relative to the aircraft in world coordinates. This is a computationally quick estimate and
can operate within the means of an embedded device with little expense.

4 PLANNING

4.1 Roomba Following

Once our planning algorithm chooses a roomba to ”score,” it moves towards the roomba, and
follows the roomba from above. This following algorithm utilizes two Proportional-Integral-
Derivative controllers(PID), one for Roll and the other for Pitch. Using the roomba position
information output by the perception stack, we are able to calculate the PID coe�cients
and implement the controllers. By tuning the PID gains, we are able to adjust the response
of the aircraft to a change in position of the roomba, resulting in a smooth and accurate
following of the roomba.

Page 6 of 12



Figure 4: Quadcopter following a roomba in our simulation

4.2 Roomba Landing

The landing algorithm immediately proceeds the ”Following” algorithm, where once we
believe we have an accurate ”follow” of the roomba, our quadcopter can slowly descend onto
the roomba, pushing the button. We then increase our altitude until we can detect the state
and heading of the roomba, such that either we land once more or return to a follow, such
that it moves towards the goal line.

5 SELF-ESTIMATION

The UAV depends on information in its surroundings such as visual location and its relative
orientation. In this paper, we present a solution to self-localization that consists of kinematics
and traits of the hough transform. We can exploit the uniformity of the 20m by 20m square
grid being compromised of smaller 1m by 1m squares.

5.1 Grid Detection

Grid detection is made possible through a few steps. First, we apply a white threshold to
highlight the grid lines (Figure 5.a). Then we apply a canny edge detector to identify the
edges of the lines. Next, a hough line transform is done in order to find the location and
angles of the grid lines.

5.2 Localization

Since we identified the location and angle of the grid lines from the hough transform (Figure
5.b), we can exploit the hough space. The green sinusoid represents the center the camera
image, where the red squares are the grid lines. In particular, in this case, three horizontal
grid lines are represented by the three red squares marked at the -90 degrees; six vertical
lines we observed in the real world are the six red dots marked at the 0 degrees. The green
sinusoid represents the center of the image in the hough space. The green curve passes
through the third red square from top at -90 degrees, which implies that the third horizontal
line passes through the center of view; similarly, the green sinusoid is between the fifth and
sixth grid line, showing that we are between them.

Page 7 of 12



(a) Grid after filtering and edge detection (b) Hough line transformation of Grid w/ UAV
Position

Figure 5: Grid Detection and Localization

As the UAV starts moving over the grid, both horizontal and vertical grid lines would pass
through the center of view. In Hough Space, the red squares (lines) would cross the green
sinusoid (center of view). This is achieved by tracking the two closest a red squares relative
to the center of view. During movement, a red square crosses the green sinusoid indicating
the direction and the change in position of the UAV. Through the use of the inverse hough
transform, we can also localize ourself inside a grid cell. Using this, we can localize ourselves
relative to our location on the grid by counting how many grid lines we traversed, both
vertically and horizontally.

5.3 Kinematics

Using our gyroscope and accelerometer, we are able to transmit the UAV’s yaw data and
its velocity to the ground station. To map the UAV’s coordinates to a map of the arena,
we calculate it’s x and y position relative to the starting position of the UAV. Assuming a
sample rate t, we can calculate the total distance

d = v ⇤ t

where v is its velocity. We then can find it’s x and y coordinates using the equations

x = d ⇤ cos()

and
y = d ⇤ sin()

where is the gyroscope’s yaw data. We simulated this kinematics method using Matlab as
shown in Figure X. In the simulation, we set the origin to be the center of the arena and we
also displayed the trail of the UAV. Since this method accumulates error over time, it serves
as a sanity check to the method described in the previous section.

Page 8 of 12



Figure 6: IARC Arena

6 SIMULATION

In the absence of a physical or finished aircraft, and for safety reasons, initial testing needed to
be done on a simulation. We developed a software in the loop simulation in order to develop
our software package. The aircraft’s software stack exists within the ROS framework, which
integrates directly with the 3D simulation software, Gazebo.

6.1 Gazebo

Gazebo allows numerous customizations to be done to allow incredible flexibility in robot
simulation. It also supports generation of measurements from a multitude of sensors, allowing
customization for additive noise. Gazebo provides extensive documentation [2] and examples
of how to implement and simulate various situations. They provide direct access to their
API with the use of plugins, allowing for development of control software for robots, sensors
and even the environment.

6.2 The Reference

The development process for our simulation began by referencing the implementation achieved
by Aerial Robotics Kharagpur [4]. Their implementation served as an excellent starting point
for our team; however, there were many improvements that could be made to allow for a
more realistic, more accurate simulation.

6.3 Improvements

6.3.1 Floor Texture and Lines

Firstly, improvements on the gazebo world were made, namely the arena floor. We replaced
the texture of the arena floor, increasing its resolution. We also redrew the grid to incorporate
the double thick line in the center, as well as the colored goal lines.

Page 9 of 12



Figure 7: Drawing the arena lines with GIMP (Left) and Empty field with new floor texture
and new lines in Gazebo (Right

Figure 8

6.3.2 Roomba Models

Next, the vanilla gazebo model for the iRobot Create, provided in the gazebo models library,
needed customization to match the mission 7 aesthetic. Thus, using sdf, a derivation from
XML specialized for describing robot models and environments, we were able to adapt the
roomba models to feature a colored top plate, and a touch paddle more consistent with
mission 7.

Figure 9: Original Roomba Model (Left) Updated Roomba Models (Center and Right)

Also, the roombas designed to be obstacles in mission 7 were also modified, adjusting the
size of the ’PVC’ attachment to match dimensions consistent with the rulebook.

6.3.3 Quadcopter Model and Sensors

Another area needing improvement is the quadcopter model. The included model comes
from the hector quadrotor package provided by ROS. This model is more simplistic than we
would have liked, as it does not account for the complicated dynamics and movement of a
real quadcopter. It also is not compatible with MAVROS, which links ROS to the MAVLink
communication protocol used on most physical autopilot systems. Therefore, we decided to
replace it with the Erle-Copter.

Page 10 of 12



Figure 10: Original Quadrotor Model (Left) and New Erle-Copter Model (Right)

Following the Erle-Copter simulation documentation provided by Erle Robotics [3], and with
considerable tweaking, we were able to add the Erle-Copter model to our simulation. The
Erle-Copter’s movements are incredibly realistic, as it accounts for the quadcopter’s dynam-
ics. The model is realistic looking, with spinning rotors, and a high resolution model. It also
features the prized compatibility with MAVROS/MAVLink. Basic movement commands
may be sent to the Erle-Copter via the MAVProxy console, or more complicated commands
programmatically by overriding the RC input to the quadcopter.

Some of the many sensors included with the Erle-Copter are a forwards facing lidar and
camera, and a downwards facing camera. The Erle-Copter model information is written
in urdf with xacro, much like sdf it is in XML syntax. We modified the model to better
match what we expected for our physical quadcopter, removing unnecessary sensors, and
adding a downwards facing camera (optional fisheye image feed), a downwards facing lidar
(for accurate altitude measurements), and an optical flow sensor.

6.4 Current Simulation

Our simulation is an amalgamation of various packages, working seemlessly to deliver an aes-
thetically pleasing, highly functional, easily customizable, simulation environment for ROS
software development. It integrates the Ardupilot SITL plugin, MAVROS, MAVLink/MAVProxy,
ROS/GAZEBO, and many other packages, including our own software stack.

Figure 11: The UCSD IARC Simulation for Mission 7

Page 11 of 12



Because gazebo communicates and integrates with ROS directly, sensor and robot informa-
tion being published can be accessed via the ROS topics. Therefore, for example the camera
image feed information can be accessed at any time.

Figure 12: Downwards facing camera (Left) with fisheye lens (Right)

7 CONCLUSION

The challenges presented in Mission 7a are not only challenging from a software perspective,
but also from a system integration perspective. Our solution involved integrating multi-
ple complex systems while working with of open source software packages and commercial
hardware. testing the system was a logistics challenge, building a robust software in loop sim-
ulator that allows us to test our software package on a nearly identical aircraft model within
an environment modeled after the IARC arena was paramount. Abstracting the challenges
into well defined packages allowed us to streamline development process. Our object identi-
fication and trajectory estimation works well within our simulation, but we are planning on
improving its robustness in the future. We are currently still in the process of finalizing our
Localization algorithm, which has performed well in testing. The next step for us would be
to develop an algorithm for herding the obstacles since currently we can only follow a roomba
and change its direction. We wanted to prove robust localization and object identification
and tracking before tackling the herding optimization problem and autonomously changing
strategies mid-flight.

REFERENCES

[1] I. A. R. C. O�cial Rules for the International Aerial Robotics Competition. http://www.

aerialroboticscompetition.org/downloads/mission7rules_013017.pdf.

[2] Gazebo. Gazebo API Reference. http://osrf-distributions.s3.amazonaws.com/gazebo/

api/7.1.0/index.html.

[3] E. Robotics. Gazebo Simulation. http://docs.erlerobotics.com/simulation.

[4] A. R. K. Team. Kharagpur Quadrotor Simulator. https://github.com/quadrotor-IITKgp/
quad_simulator.

Page 12 of 12


